论文标题
Mukai的程序(通过曲线从曲线重建K3表面),通过墙壁交叉,II
Mukai's Program (reconstructing a K3 surface from a curve) via wall-crossing, II
论文作者
论文摘要
令$ c $为K3 Surface $ x $的曲线,Picard Group $ \ Mathbb {Z}。[C] $。 Mukai的计划旨在通过向$ C $上的Brill-Noether Locus展示其作为傅立叶伙伴的傅立叶伙伴来从$ c $中收回$ x $。我们在Bridgeland稳定条件的空间中使用墙壁交叉来证明这是$ \ ge14 $的属。本文处理了纸张I的案例$ G-1 $ PRIME。
Let $C$ be a curve on a K3 surface $X$ with Picard group $\mathbb{Z}.[C]$. Mukai's program seeks to recover $X$ from $C$ by exhibiting it as a Fourier-Mukai partner to a Brill-Noether locus of vector bundles on $C$. We use wall-crossing in the space of Bridgeland stability conditions to prove this for genus $\ge14$. This paper deals with the case $g-1$ prime left over from Paper I.