论文标题
双值强耦合校正与Bardeen-Cooper-Schrieffer比率
Double-valued strong-coupling corrections to Bardeen-Cooper-Schrieffer ratios
论文作者
论文摘要
在高度压缩的h $ _3 $ s,lah $ _1 $ _ 0 $ _ 0 $和yh $ _6 $恢复超导体中电子配对机构的基本利益的实验性发现近室温(NRT)超导性。高度压缩的氢化物中语音介导的NRT超导性的先决条件之一是强的电子 - 音波相互作用,可以通过Bardeen-Cooper-Schrieffer(BCS)理论的无量纲比例来量化它。 $ k {_b} t {_c} $/($ {\ hslash} $$ω{_l} {_ n} $),其中TC是临界温度,$ω{_l} {_ n} {_ n} $是boolesmic phoron频率(aboolithmic phoron频率(mitrovic et and the MitRovic et and and。但是,BCS比率的所有已知的已知强耦合校正校正功能均适用于$ k {_b} t {_c} $/($ {$ {\ hslash} $ω{_l _l} {_ n} {_ n} $)<0.20 $ k {_b} t {_c} $/($ {\ hslash} $$ω{_l} {_ n} $)nrt超导体的范围,因为后者展示变量为0.13 << $ k {_b} t {_c} $/($ {\ hslash} $$ω{_l} {_ n} $)<0.32。在本文中,我们重新分析了完整的实验数据集(包括高度压缩的H3S的数据),并发现差距与关键率 - 温度比和特定热量比率的强耦合校正函数是双重价值的几乎可接口的功能$ k {_b} t {_c} $/($ {\ hslash} $$ω{_l} {_ n} $)。
Experimental discovery of near-room-temperature (NRT) superconductivity in highly-compressed H$_3$S, LaH$_1$$_0$ and YH$_6$ restores fundamental interest to electron-phonon pairing mechanism in superconductors. One of prerequisites of phonon-mediated NRT superconductivity in highly-compressed hydrides is strong electron-phonon interaction, which can be quantified by dimensionless ratios of Bardeen-Cooper-Schrieffer (BCS) theory vs $k{_B}T{_c}$/(${\hslash}$$ω{_l}{_n}$), where Tc is the critical temperature and $ω{_l}{_n}$ is the logarithmic phonon frequency (Mitrovic et al. 1984 Phys. Rev. B 29 184). However, all known strong-coupling correction functions for BCS ratios are applicable for $k{_B}T{_c}$/(${\hslash}$$ω{_l}{_n}$)<0.20, which is not high enough $k{_B}T{_c}$/(${\hslash}$$ω{_l}{_n}$) range for NRT superconductors, because the latter exhibit variable values of 0.13 < $k{_B}T{_c}$/(${\hslash}$$ω{_l}{_n}$) < 0.32. In this paper, we reanalyze full experimental dataset (including data for highly-compressed H3S) and find that strong-coupling correction functions for the gap-to-critical-temperature ratio and for the specific-heat-jump ratio are double-valued nearly-linear functions of $k{_B}T{_c}$/(${\hslash}$$ω{_l}{_n}$).