论文标题
粒子阵列对相分离组成模式的影响
Impact of Particle Arrays on Phase Separation Composition Patterns
论文作者
论文摘要
我们研究了粒子固定星座对二元混合物表面分解的固定星座的对称性影响,其存在颗粒的存在,其表面对其中一个成分具有优先的亲和力。我们的相位模拟表明,在存在粒子阵列的存在下的相分离形态可以调节为连续,液滴,层状或杂交形态,具体取决于颗粒间距,混合组成和时间。特别是,当颗粒间距与Spinodal波长相比,瞬时目标模式是由较早出现的首选和非偏爱相的替代环组成的,倾向于采用粒子构型的对称性。我们揭示了此类目标模式的某些特征长度,时间和组成量表的纯相分离混合物的特征稳定。为了说明混合粒子系统表现出的一般现象范围,我们模拟了具有多种几何构型的单粒,多粒子和簇粒子系统的影响。我们的模拟表明,根据块共聚物材料,相对流体粒子组成定制颗粒构型或底物图案构型,相对流体粒子组成应可以通过块共聚物材料进行理想的控制,但是在这种方法可以访问的尺度可以访问这种方法的方法中,组织相位分离的流体通常会大大更大。有限的实验证实了在我们的模拟中观察到的趋势,这应该为工程图案的混合和其他技术兴趣的混合物提供一些指导。
We examine the symmetry-breaking effect of fixed constellations of particles on the surface-directed spinodal decomposition of binary blends in the presence of particles whose surfaces have a preferential affinity for one of the components. Our phase-field simulations indicate that the phase separation morphology in the presence of particle arrays can be tuned to have a continuous, droplet, lamellar, or hybrid morphology depending on the interparticle spacing, blend composition, and time. In particular, when the interparticle spacing is large compared to the spinodal wavelength, a transient target pattern composed of alternate rings of preferred and non-preferred phases emerge at early times, tending to adopt the symmetry of the particle configuration. We reveal that such target patterns stabilize for certain characteristic length, time, and composition scales characteristic of the pure phase separating mixture. To illustrate the general range of phenomena exhibited by mixture-particle systems, we simulate the effects of single-particle, multi-particle, and cluster-particle systems having multiple geometrical configurations of the particle characteristic of pattern substrates on phase separation. Our simulations show that tailoring the particle configuration, or substrate pattern configuration, a relative fluid-particle composition should allow the desirable control of the phase separation morphology as in block copolymer materials, but where the scales accessible to this approach of organizing phase-separated fluids usually are significantly larger. Limited experiments confirm the trends observed in our simulations, which should provide some guidance in engineering patterned blend and other mixtures of technological interest.