论文标题

相关费米的非亚伯IPEP的初学者指南

A beginner's guide to non-abelian iPEPS for correlated fermions

论文作者

Bruognolo, Benedikt, Li, Jheng-Wei, von Delft, Jan, Weichselbaum, Andreas

论文摘要

无限投影的纠缠对状态(IPEP)已成为研究二维费米子系统的强大工具。在这篇综述中,我们讨论了该张量网络(TN)ANSATZ的IPEPS构建和一些基本属性。特别关注(i)(i)对图形TN表示的温和介绍,构成了得出复杂数值算法的基础,(ii)(ii)完全利用非亚洲对称性的技术进步,用于对效率iPeps的多波段晶格模型处理。非阿布尔对称性的剥削大大提高了算法的性能,从而使Fermionic Systems的处理达到了债券尺寸$ d = 24 $。因此,各种复杂的二维(2D)模型在数值上可以访问。在这里,我们为两种类型的多波段哈伯德模型提供了第一个有希望的结果,一种$ 2 $ $ \ mathrm {surm {su}(2)_ \ mathrm {spin} \ otimes \ otimimes \ mathrm {surm {su}(su}(2)(2)_ \ mathrm {orb} $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ 3 $ \ mathrm {su}(3)_ \ mathrm {float} $对称。

Infinite projected entangled pair states (iPEPS) have emerged as a powerful tool for studying interacting two-dimensional fermionic systems. In this review, we discuss the iPEPS construction and some basic properties of this tensor network (TN) ansatz. Special focus is put on (i) a gentle introduction of the diagrammatic TN representations forming the basis for deriving the complex numerical algorithm, and (ii) the technical advance of fully exploiting non-abelian symmetries for fermionic iPEPS treatments of multi-band lattice models. The exploitation of non-abelian symmetries substantially increases the performance of the algorithm, enabling the treatment of fermionic systems up to a bond dimension $D=24$ on a square lattice. A variety of complex two-dimensional (2D) models thus become numerically accessible. Here, we present first promising results for two types of multi-band Hubbard models, one with $2$ bands of spinful fermions of $\mathrm{SU}(2)_\mathrm{spin} \otimes \mathrm{SU}(2)_\mathrm{orb}$ symmetry, the other with $3$ flavors of spinless fermions of $\mathrm{SU}(3)_\mathrm{flavor}$ symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源