论文标题

高$ \ ell $ -torsion class groups toffunp

High $\ell$-torsion rank for class groups over function fields

论文作者

Setayesh, Iman, Tsimerman, Jacob

论文摘要

我们证明,在函数字段设置中,二次字段的类组中的$ \ ell $ torsion可以任意大。实际上,我们明确地产生了一个家庭 其$ \ ell $ rank的增长与属理论的环境相匹配,这可能是最好的。我们通过专门关注Artin-Schreir曲线$ y^2 = X^Q-X $来做到这一点。

We prove that in the function field setting, $\ell$-torsion in the class groups of quadratic fields can be arbitrarily large. In fact, we explicitly produce a family whose $\ell$-rank growth matches the growth in the setting of genus theory, which might be best possible. We do this by specifically focusing on the Artin-Schreir curves $y^2=x^q-x$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源