论文标题

氢键和疏水性的理论光谱研究

Theoretical Spectroscopic Investigation of Hydrogen Bonding and Hydrophobicity

论文作者

Reddy, Kambham Devendra, Biswas, Rajib

论文摘要

疏水物溶质显着改变了水氢键网络。溶剂结构的局部变化反映在振动光谱信号中。尽管可以通过现代红外光谱法检测出显微镜表面,但是,大量相光谱通常会带来强大的挑战,从而建立了实验光谱与分子结构之间的联系。即使光谱数据无法提供显微镜图片,理论表格传输也可以用作更强大的工具。在当前的工作中,我们基于使用甲烷在水系统中的混合量子量子型分子模拟方法构建理论光谱图。单个振荡器级O-H拉伸频率与集体可变溶剂化能及相关。我们为基本传输频率以及过渡偶极子构建光谱图。过渡频率的双峰频率分布显示了甲异烷水合壳中的气体等气体存在。 O-H弹力频率的壳分解进一步补充了这一观察结果。我们观察到除了直接面向甲烷分子的水分子以外的第一个溶剂化水的排序有显着增加。这体现在观察到的过渡频率的红移中。温度依赖性模拟表明,面对甲烷分子的水分子类似于高温水,其余的第一个壳体水分子的其余部分表现得更加像雌性水。

Hydrophobic solutes significantly alters water hydrogen bond network. The local alteration of solvation struc-tures get reflected in the vibrational spectroscopic signal. Although it is possible to detect this microscopicfeatures by modern infrared spectroscopy, however, bulk phase spectra often comes with formidable challengeof establishing the connection among the experimental spectra to molecular structures. Theoretical spec-troscopy can serve as more powerful tool even where spectroscopic data cannot provide microscopic picture.In the present work, we build a theoretical spectroscopic map based on mixed quantum-classical molecularsimulation approach using methane in water system. The single oscillator level O-H stretch frequency is wellcorrelated with a collective variable solvation energy. We construct the spectroscopic maps for fundamentaltransition frequencies and also the transition dipoles. A bimodal frequency distribution with a blue shiftedpopulation of transition frequency illustrates presence of gas like water molecules in the hydration shell ofmethane. This observation is further complemented by a shell-wise decomposition of the O-H stretch fre-quencies. We observe a significant increase in ordering of the first solvation water except the water molecules,which are directly facing the methane molecule. This is manifested in redshift of the observed transition fre-quencies. Temperature dependent simulations depict that the water molecules facing to the methane moleculebehave similar to the high temperature water and the rest of the first shell water molecules behave more likecold water.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源