论文标题

与生成先验的尖峰基质回收的非杂质保证

Nonasymptotic Guarantees for Spiked Matrix Recovery with Generative Priors

论文作者

Cocola, Jorio, Hand, Paul, Voroninski, Vladislav

论文摘要

统计和机器学习中的许多问题都需要从嘈杂数据中重建排名一号信号矩阵。执行有关排名一的组件的其他先前信息通常是确保良好恢复性能的关键。低级组成部分的先验是稀疏性,从而导致稀疏的主成分分析问题。不幸的是,有充分的证据表明,这个问题遭受了计算之间的差距,这可能是基本的。在这项工作中,我们研究了一个替代性,其中低级组件处于训练有素的生成网络范围内。我们提供了具有最佳样品复杂性(直到对数因素)的非质子分析,以在膨胀的高斯网络之前进行等级的基质恢复。具体而言,我们为非线性最小二乘物镜建立了一个有利的全局优化景观,前提是样本的数量是输入对生成模型的维度的顺序。该结果表明,生成先验在有限数据中没有计算到统计的差距,即有限数据,即非矩阵制度。在WishArt和Wigner尖峰矩阵模型的情况下,我们介绍了这一分析。

Many problems in statistics and machine learning require the reconstruction of a rank-one signal matrix from noisy data. Enforcing additional prior information on the rank-one component is often key to guaranteeing good recovery performance. One such prior on the low-rank component is sparsity, giving rise to the sparse principal component analysis problem. Unfortunately, there is strong evidence that this problem suffers from a computational-to-statistical gap, which may be fundamental. In this work, we study an alternative prior where the low-rank component is in the range of a trained generative network. We provide a non-asymptotic analysis with optimal sample complexity, up to logarithmic factors, for rank-one matrix recovery under an expansive-Gaussian network prior. Specifically, we establish a favorable global optimization landscape for a nonlinear least squares objective, provided the number of samples is on the order of the dimensionality of the input to the generative model. This result suggests that generative priors have no computational-to-statistical gap for structured rank-one matrix recovery in the finite data, nonasymptotic regime. We present this analysis in the case of both the Wishart and Wigner spiked matrix models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源