论文标题
Frankel类型定理Sasakian歧管的通用子手机
A Frankel type theorem for generic submanifolds of Sasakian manifolds
论文作者
论文摘要
我们引入了萨萨基人歧管的通用子序列的较弱的概念,我们证明了这种子序列化的弗兰克尔型定理,该定理是在适当的低调下,在标量李维(Scalar Levi)形式的指数上由正常方向确定。它涉及通用和不变的子手机与两个通用子手机之间的相交之间的交集。从该定理中,我们得出了有关Sasakian空间形式的通用亚曼叶的一些拓扑信息。
We introduce a weaker notion of generic submanifold of a Sasakian manifold and we prove a Frankel type theorem for this kind of submanifolds under suitable hypotesis on the index of the scalar Levi forms determined by normal directions. It concerns the intersection between a generic and an invariant submanifold and the intersection between two generic submanifolds. From this theorem we derive some topological information about generic submanifolds of Sasakian space forms.