论文标题

良好的boussinesq方程的适应性良好,受到准周期初始数据

Well-posedness for good Boussinesq equations subject to quasi-periodic initial data

论文作者

Gao, Yixian, Li, Yong, Su, Chang

论文摘要

本文涉及“良好” Boussinesq方程的局部良好性,但要受到准周期初始条件的影响。通过与明确的组合分析一起构建精致,微妙的迭代过程,我们表明在较小的时间区域中存在着一种独特的解决方案。该区域的大小取决于给定数据和涉及的频率矢量。此外,本地溶液具有指数衰减的傅立叶系数的扩展。

This paper concerns the local well-posedness for the "good" Boussinesq equation subject to quasi-periodic initial conditions. By constructing a delicately and subtly iterative process together with an explicit combinatorial analysis, we show that there exists a unique solution for such a model in a small region of time. The size of this region depends on both the given data and the frequency vector involved. Moreover the local solution has an expansion with exponentially decaying Fourier coefficients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源