论文标题

光学音乐识别:艺术状况和主要挑战

Optical Music Recognition: State of the Art and Major Challenges

论文作者

Shatri, Elona, Fazekas, György

论文摘要

光学识别(OMR)与将乐谱音乐转录为机器可读格式有关。转录的副本应允许音乐家通过拍摄音乐表来创作,播放和编辑音乐。乐谱的完整转录也将实现更有效的档案。 OMR促进了从统计学上检查乐谱或搜索符号模式,从而帮助数字音乐学中的用例。最近,OMR从使用传统的计算机视觉技术转变为深度学习方法。在本文中,我们回顾了OMR的相关作品,包括基本方法和重要结果,并突出了OMR管道的不同阶段。这些阶段通常缺乏标准输入和输出表示以及标准化评估。因此,比较不同的方法并评估不同处理方法的影响可能会变得相当复杂。本文为将来的工作提供了建议,解决了一些突出的问题,并代表了进一步发展这一重要研究领域的立场。

Optical Music Recognition (OMR) is concerned with transcribing sheet music into a machine-readable format. The transcribed copy should allow musicians to compose, play and edit music by taking a picture of a music sheet. Complete transcription of sheet music would also enable more efficient archival. OMR facilitates examining sheet music statistically or searching for patterns of notations, thus helping use cases in digital musicology too. Recently, there has been a shift in OMR from using conventional computer vision techniques towards a deep learning approach. In this paper, we review relevant works in OMR, including fundamental methods and significant outcomes, and highlight different stages of the OMR pipeline. These stages often lack standard input and output representation and standardised evaluation. Therefore, comparing different approaches and evaluating the impact of different processing methods can become rather complex. This paper provides recommendations for future work, addressing some of the highlighted issues and represents a position in furthering this important field of research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源