论文标题

使用立方持久性发现随时间变化的fMRI数据的拓扑结构

Uncovering the Topology of Time-Varying fMRI Data using Cubical Persistence

论文作者

Rieck, Bastian, Yates, Tristan, Bock, Christian, Borgwardt, Karsten, Wolf, Guy, Turk-Browne, Nicholas, Krishnaswamy, Smita

论文摘要

功能磁共振成像(fMRI)是一项至关重要的技术,可以洞悉人类认知过程。从功能磁共振成像测量中积累的数据会导致体积数据集随时间变化。但是,分析此类数据的挑战是由于大脑中信息表示的大量噪声和人与人之间的变化。为了应对这一挑战,我们提出了一种新颖的拓扑方法,该方法在fMRI数据集中编码每个时间点,作为拓扑特征的持续图,即数据中存在的高维空隙。这种表示自然不依赖于逐素的对应关系,并且对噪声是可靠的。我们表明,可以将这些随时间变化的持久图聚类以找到参与者之间有意义的分组,并且它们在研究执行特定任务的受试者的受试者内部脑状态轨迹也很有用。在这里,我们将聚类和轨迹分析技术应用于观看电影“部分多云”的一群参与者。我们观察到大脑状态轨迹和观看同一电影的儿童之间的整体拓扑活动都存在显着差异。

Functional magnetic resonance imaging (fMRI) is a crucial technology for gaining insights into cognitive processes in humans. Data amassed from fMRI measurements result in volumetric data sets that vary over time. However, analysing such data presents a challenge due to the large degree of noise and person-to-person variation in how information is represented in the brain. To address this challenge, we present a novel topological approach that encodes each time point in an fMRI data set as a persistence diagram of topological features, i.e. high-dimensional voids present in the data. This representation naturally does not rely on voxel-by-voxel correspondence and is robust to noise. We show that these time-varying persistence diagrams can be clustered to find meaningful groupings between participants, and that they are also useful in studying within-subject brain state trajectories of subjects performing a particular task. Here, we apply both clustering and trajectory analysis techniques to a group of participants watching the movie 'Partly Cloudy'. We observe significant differences in both brain state trajectories and overall topological activity between adults and children watching the same movie.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源