论文标题
GKZ系统的同源和同源交集数
Homology and cohomology intersection numbers of GKZ systems
论文作者
论文摘要
我们描述了与常规三角剖分的组合学方面相关的同源交集形式。将此结果与扭曲的时期关系相结合,从洛尔伦(Laurent)序列方面获得了共同体相交数字的公式。我们表明,共同体交集的数量在理性上取决于参数。我们还证明了F. beukers and C. verschoor的猜想是关于单构象不变的Hermitian形式的签名。这是先前工作的延续:1904.00565。
We describe the homology intersection form associated to regular holonomic GKZ systems in terms of the combinatorics of regular triangulations. Combining this result with the twisted period relation, we obtain a formula of cohomology intersection numbers in terms of a Laurent series. We show that the cohomology intersection number depends rationally on the parameters. We also prove a conjecture of F. Beukers and C. Verschoor on the signature of the monodromy invariant hermitian form. This is a continuation of the previous work arXiv:1904.00565.