论文标题

PCAAE:用于组织生成网络潜在空间的主要组件分析自动编码器

PCAAE: Principal Component Analysis Autoencoder for organising the latent space of generative networks

论文作者

Pham, Chi-Hieu, Ladjal, Saïd, Newson, Alasdair

论文摘要

自动编码器和生成模型迄今为止产生一些最壮观的深度学习结果。但是,了解和控制这些模型的潜在空间带来了巨大的挑战。从主成分分析和自动编码器中汲取灵感,我们提出了主要组件分析自动编码器(PCAAE)。这是一种新颖的自动编码器,其潜在空间验证了两个属性。首先,尺寸相对于手头数据的重要性降低了。其次,潜在空间的组成部分在统计上是独立的。我们通过在训练过程中逐步增加潜在空间,并将协方差损失应用于潜在代码,从而实现这一目标。所得的自动编码器产生一个潜在空间,该空间将数据的固有属性分开为潜在空间的不同组成部分,以完全无监督的方式。我们还描述了我们对强大,预训练的gan案例的方法的扩展。我们在形状的合成示例和最先进的gan上都显示了结果。例如,我们能够将头发和皮肤的颜色阴影比例分离,而在Celeba中的性别姿势和性别,而无需访问任何标签。我们将PCAAE与其他最先进的方法进行了比较,尤其是在潜在空间中解散属性的能力。我们希望这种方法将有助于更好地理解强大的深层生成模型的内在潜在空间。

Autoencoders and generative models produce some of the most spectacular deep learning results to date. However, understanding and controlling the latent space of these models presents a considerable challenge. Drawing inspiration from principal component analysis and autoencoder, we propose the Principal Component Analysis Autoencoder (PCAAE). This is a novel autoencoder whose latent space verifies two properties. Firstly, the dimensions are organised in decreasing importance with respect to the data at hand. Secondly, the components of the latent space are statistically independent. We achieve this by progressively increasing the latent space during training, and with a covariance loss applied to the latent codes. The resulting autoencoder produces a latent space which separates the intrinsic attributes of the data into different components of the latent space, in a completely unsupervised manner. We also describe an extension of our approach to the case of powerful, pre-trained GANs. We show results on both synthetic examples of shapes and on a state-of-the-art GAN. For example, we are able to separate the color shade scale of hair and skin, pose of faces and the gender in the CelebA, without accessing any labels. We compare the PCAAE with other state-of-the-art approaches, in particular with respect to the ability to disentangle attributes in the latent space. We hope that this approach will contribute to better understanding of the intrinsic latent spaces of powerful deep generative models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源