论文标题
复杂的古典谎言群体的分散表示
Scattered representations of complex classical Lie groups
论文作者
论文摘要
本文研究了$ g = so的分散表示(2n+1,\ mathbb {c})$,$ sp(2n,\ mathbb {c})$和$ so(2n,\ mathbb {c})$,其中属于单个spectrum $ g $ g $ nononnation $ g $ cop nonnothention cole cole nonnotial noce co $ cole cole cole cole nonnoniale $ g $。我们描述了这些表示形式的zhelobenko参数,计算其基数,并确定其旋转最低的$ k $ types。我们还反驳了2015年提出的一个猜想,称统一双重可以通过抛物线诱导从具有非零DIRAC共同体学的不可还原统一表示。
This paper studies scattered representations of $G = SO(2n+1, \mathbb{C})$, $Sp(2n, \mathbb{C})$ and $SO(2n, \mathbb{C})$, which lies in the `core' of the unitary spectrum $G$ with nonzero Dirac cohomology. We describe the Zhelobenko parameters of these representations, count their cardinality, and determine their spin-lowest $K$-types. We also disprove a conjecture raised in 2015 asserting that the unitary dual can be obtained via parabolic induction from irreducible unitary representations with non-zero Dirac cohomology.