论文标题
MixMood:使用深度数据集差异措施的半监督学习中的类分配不匹配的系统分配方法
MixMOOD: A systematic approach to class distribution mismatch in semi-supervised learning using deep dataset dissimilarity measures
论文作者
论文摘要
在这项工作中,我们提出了MixMood - 一种系统的方法,可减轻类别分配不匹配的半监督深度学习(SSDL)与MixMatch的影响。这项工作分为两个组成部分:(i)SSDL的广泛分布(OOD)消融测试床和(ii)定量的无标记数据集选择启发式启发式启发式,称为MixMood。在第一部分中,我们分析了三个多类分类任务中90个不同的分布不匹配方案下混合疗法精度的灵敏度。这些旨在系统地了解OOD未标记的数据如何影响混合摩擦性能。在第二部分中,我们提出了一种有效有效的方法,称为DEEP数据集差异度度量(DEDIMS),以比较标记和未标记的数据集。拟议的Dedims快速评估和模型不可知。他们使用通用宽线网的特征空间,可以在学习之前应用。我们的测试结果表明,标记的数据和未标记数据之间的语义相似性对于未标记的数据选择不是一个好的启发式方法。相比之下,根据预期的混合摩竞气的精度,混合匹配精度与所提出的DEDIM之间的强相关性使我们能够定量对不同的未标记数据集进行定量排名。这就是我们所说的混音。此外,我们认为,混合方法可以有助于标准化在涉及分配数据的现实世界情景下对不同半监督学习技术的评估。
In this work, we propose MixMOOD - a systematic approach to mitigate effect of class distribution mismatch in semi-supervised deep learning (SSDL) with MixMatch. This work is divided into two components: (i) an extensive out of distribution (OOD) ablation test bed for SSDL and (ii) a quantitative unlabelled dataset selection heuristic referred to as MixMOOD. In the first part, we analyze the sensitivity of MixMatch accuracy under 90 different distribution mismatch scenarios across three multi-class classification tasks. These are designed to systematically understand how OOD unlabelled data affects MixMatch performance. In the second part, we propose an efficient and effective method, called deep dataset dissimilarity measures (DeDiMs), to compare labelled and unlabelled datasets. The proposed DeDiMs are quick to evaluate and model agnostic. They use the feature space of a generic Wide-ResNet and can be applied prior to learning. Our test results reveal that supposed semantic similarity between labelled and unlabelled data is not a good heuristic for unlabelled data selection. In contrast, strong correlation between MixMatch accuracy and the proposed DeDiMs allow us to quantitatively rank different unlabelled datasets ante hoc according to expected MixMatch accuracy. This is what we call MixMOOD. Furthermore, we argue that the MixMOOD approach can aid to standardize the evaluation of different semi-supervised learning techniques under real world scenarios involving out of distribution data.