论文标题
使用机器学习对单个光子的空间模式校正
Spatial Mode Correction of Single Photons using Machine Learning
论文作者
论文摘要
光线模式构成了从量子通信和量子成像到遥感的各种量子技术的宝贵资源。然而,它们因随机介质引起的阶段扭曲脆弱性对众多量子 - 光子技术的现实实施施加了重大局限性。不幸的是,这个问题在单光子级别加剧了。在过去的二十年中,通过使用光学非线性,量子相关性和自适应光学的传统方案解决了这个具有挑战性的问题。在本文中,我们利用了人工神经网络的自学和自我发展特征,以纠正单光子级上扭曲的拉瓜尔 - 高斯模式的复杂空间曲线。此外,我们证明了使用机器学习对单个光子进行空间模式校正来提高光学通信协议的性能的可能性。我们的结果对结构化光子和单光子图像的实时湍流校正具有重要意义。
Spatial modes of light constitute valuable resources for a variety of quantum technologies ranging from quantum communication and quantum imaging to remote sensing. Nevertheless, their vulnerabilities to phase distortions, induced by random media, impose significant limitations on the realistic implementation of numerous quantum-photonic technologies. Unfortunately, this problem is exacerbated at the single-photon level. Over the last two decades, this challenging problem has been tackled through conventional schemes that utilize optical nonlinearities, quantum correlations, and adaptive optics. In this article, we exploit the self-learning and self-evolving features of artificial neural networks to correct the complex spatial profile of distorted Laguerre-Gaussian modes at the single-photon level. Furthermore, we demonstrate the possibility of boosting the performance of an optical communication protocol through the spatial mode correction of single photons using machine learning. Our results have important implications for real-time turbulence correction of structured photons and single-photon images.