论文标题
混合湿页岩渗透介质中的明显液体通透性
Apparent Liquid Permeability in Mixed-Wet Shale Permeable Media
论文作者
论文摘要
超固定的可渗透培养基中的明显液体通透性(ALP)主要受孔隙约束和流体岩石相互作用的控制。需要一个新的ALP模型来预测上述两者对混合湿,异质纳米型培养基中流动的交互作用。这项研究得出了一个ALP模型,并整合了由分子动力学(MD)模拟,扫描电子显微镜,原子力显微镜和汞注入毛细血管压力的结果。 ALP模型假定曲折的力,毛细作用力和液体滑动,曲折的粗糙孔喉。根据文献中报道的MD数据,对水和辛烷值滑倒的预测进行了验证。在将拟议的液体传输模型提高到代表性的元素体积量表中,我们整合了页岩岩样品的地质分形,包括它们的孔径分布,毛孔喉咙折磨和孔隙表面粗糙度。 ALP的敏感性结果表明,当孔径低于100 nm的孔隙限制时,允许油在疏水和亲水性孔中滑动,但由于固有渗透性受限,它也限制了ALP。 ALP减少了成熟的Carman-Kozeny方程,用于一束毛细管中的无滑动粘性,这揭示了页岩与常规岩石中可区分的液体流动行为。与Klinkenberg方程相比,提出的ALP模型揭示了对页岩中液体与气体流量之间的相似性和差异的重要见解。
Apparent liquid permeability (ALP) in ultra-confined permeable media is primarily governed by the pore confinement and fluid-rock interactions. A new ALP model is required to predict the interactive effect of the above two on the flow in mixed-wet, heterogeneous nanoporous media. This study derives an ALP model and integrates the compiled results from molecular dynamics (MD) simulations, scanning electron microscopy, atomic force microscopy, and mercury injection capillary pressure. The ALP model assumes viscous forces, capillary forces, and liquid slippage in tortuous, rough pore throats. Predictions of the slippage of water and octane are validated against MD data reported in the literature. In up-scaling the proposed liquid transport model to the representative-elementary-volume scale, we integrate the geological fractals of the shale rock samples including their pore size distribution, pore throat tortuosity, and pore-surface roughness. Sensitivity results for the ALP indicate that when the pore size is below 100 nm pore confinement allows oil to slip in both hydrophobic and hydrophilic pores, yet it also restricts the ALP due to the restricted intrinsic permeability. The ALP reduces to the well-established Carman-Kozeny equation for no-slip viscous flow in a bundle of capillaries, which reveals a distinguishable liquid flow behavior in shales versus conventional rocks. Compared to the Klinkenberg equation, the proposed ALP model reveals an important insight into the similarities and differences between liquid versus gas flow in shales.