论文标题
截短的theta系列和分区分为不同的部分
Truncated theta series and partitions into distinct parts
论文作者
论文摘要
涉及Euler分区功能的线性不平等$ p(n)$一直是最近研究的主题。在本文中,我们考虑分区函数$ q(n)$将$ n $的分区计入不同的零件。使用截短的theta系列,我们为这些结果提供了四个无限的线性不平等家庭和分区理论解释。
Linear inequalities involving Euler's partition function $p(n)$ have been the subject of recent studies. In this article, we consider the partition function $Q(n)$ counting the partitions of $n$ into distinct parts. Using truncated theta series, we provide four infinite families of linear inequalities for $Q(n)$ and partition theoretic interpretations for these results.