论文标题
交替的小组作为四个共轭类的产品
Alternating groups as products of four conjugacy classes
论文作者
论文摘要
令$ g $为$ n $字母上的交替组$ \ mbox {alt}(n)$。我们证明,对于任何$ \ varepsilon> 0 $都存在$ n = n(\ varepsilon)\ in \ mathbb {n} $,以至于每当$ n \ geq n $和$ a $ a $ a $ b $,$ c $,$ c $,$ d $ a $ g $ a $ g $ a $ g $ abc $ g | G $。
Let $G$ be the alternating group $\mbox{Alt}(n)$ on $n$ letters. We prove that for any $\varepsilon > 0$ there exists $N = N(\varepsilon) \in \mathbb{N}$ such that whenever $n \geq N$ and $A$, $B$, $C$, $D$ are normal subsets of $G$ each of size at least $|G|^{1/2+\varepsilon}$, then $ABCD = G$.