论文标题
非参数回归中的内核选择
Kernel Selection in Nonparametric Regression
论文作者
论文摘要
在回归模型中,$ y = b(x) +σ(x)\ varepsilon $,其中$ x $具有密度$ f $,本文涉及甲骨文不平等,估计$ bf $,涉及Lerasle等人的内核。 (2016年),通过PCO方法选择。除了在Lacour,Massart和Rivoirard(2017)和Comte and Marie(2020年)中研究的基于内核的估计器的带宽选择外,涵盖了各向异性投影估算器的尺寸选择$ F $和$ BF $。
In the regression model $Y = b(X) +σ(X)\varepsilon$, where $X$ has a density $f$, this paper deals with an oracle inequality for an estimator of $bf$, involving a kernel in the sense of Lerasle et al. (2016), selected via the PCO method. In addition to the bandwidth selection for kernel-based estimators already studied in Lacour, Massart and Rivoirard (2017) and Comte and Marie (2020), the dimension selection for anisotropic projection estimators of $f$ and $bf$ is covered.