论文标题

交替方向的有限差异声波传播的隐式时间整合:平行和收敛

Alternating direction implicit time integrations for finite difference acoustic wave propagation: Parallelization and convergence

论文作者

Otero, B., Rojas, O., Moya, F., Castillo, J.

论文摘要

这项工作研究了在二维矩形网格上使用两个有限差的声波传播方法的并行化和经验收敛,这些方法使用相同的交替方向隐式(ADI)时间整合。这种ADI集成基于二阶隐式曲柄 - 尼古尔森时间离散化,该式临时离散是由和平脑 - 拉赫福德分解时间和空间方程项所考虑的。在太空中,这些方法高度分歧并应用不同的四阶准确分化技术。第一种方法在淋巴网上使用紧凑的有限差(CFD),该网格需要沿每个网格线求解三角线性系统,而第二个则使用交错的网格模拟物有限差(MFD)。对于每种方法,我们实现了三个并行版本:(i)八度的多线程代码,(ii)利用OpenMP Loop并行化的C ++代码,以及(iii)cuda内核,用于NVIDIA GTX 960 MAXWELL卡。在这些实现中,并行性的主要来源是根据分化方向同时对每个波场矩阵(列或行)的ADI更新。在我们的数值应用中,相对于具有最佳汇编标志的C ++顺序对应物,CFD和MFD CUDA代码分别显示出最高的性能。我们的测试用例还允许评估两种方法的数值收敛性和准确性。在具有精确谐波解决方案的问题中,两种方法都表现出接近4的收敛速率,而MDF精度实际上较高。另外,在边界处严重梯度的光滑问题上,两种融合衰减均为二阶,并且在高度解决的网格中,MDF速率降解,导致较大的不准确性。经验融合的这种过渡与时空中的名义截断错误一致。

This work studies the parallelization and empirical convergence of two finite difference acoustic wave propagation methods on 2-D rectangular grids, that use the same alternating direction implicit (ADI) time integration. This ADI integration is based on a second-order implicit Crank-Nicolson temporal discretization that is factored out by a Peaceman-Rachford decomposition of the time and space equation terms. In space, these methods highly diverge and apply different fourth-order accurate differentiation techniques. The first method uses compact finite differences (CFD) on nodal meshes that requires solving tridiagonal linear systems along each grid line, while the second one employs staggered-grid mimetic finite differences (MFD). For each method, we implement three parallel versions: (i) a multithreaded code in Octave, (ii) a C++ code that exploits OpenMP loop parallelization, and (iii) a CUDA kernel for a NVIDIA GTX 960 Maxwell card. In these implementations, the main source of parallelism is the simultaneous ADI updating of each wave field matrix, either column-wise or row-wise, according to the differentiation direction. In our numerical applications, the highest performances are displayed by the CFD and MFD CUDA codes that achieve speedups of 7.21x and 15.81x, respectively, relative to their C++ sequential counterparts with optimal compilation flags. Our test cases also allow to assess the numerical convergence and accuracy of both methods. In a problem with exact harmonic solution, both methods exhibit convergence rates close to 4 and the MDF accuracy is practically higher. Alternatively, both convergences decay to second order on smooth problems with severe gradients at boundaries, and the MDF rates degrade in highly-resolved grids leading to larger inaccuracies. This transition of empirical convergences agrees with the nominal truncation errors in space and time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源