论文标题

Quaternionic切片的常规功能和Quaternionic Laplace转换

Quaternionic slice regular functions and quaternionic Laplace transforms

论文作者

Han, Gang

论文摘要

本文中研究的功能是四个离子变量的四元评估函数。这表明左切片常规功能和右切片常规功能与特定相关性有关。揭示了左切片常规功能,右切片的常规功能和固有的常规功能之间的关系。经典的拉普拉斯变换自然可以通过两种不同的方式自然地将其概括为四个季度,从而将真实变量的四元成分函数转换为左右切片的常规Quaternion值变量的Quaternionic变量的函数。经典拉普拉斯变换的通常属性被推广到Quaternionic Laplace变换。

The functions studied in the paper are quaternion-valued functions of a quaternionic variable. It is show that the left slice regular functions and right slice regular functions are related by a particular involution. The relation between left slice regular functions, right slice regular functions and intrinsic regular functions is revealed. The classical Laplace transform can be naturally generalized to quaternions in two different ways, which transform a quaternion-valued function of a real variable to a left or right slice regular quaternion-valued function of a quaternionic variable. The usual properties of the classical Laplace transforms are generalized to quaternionic Laplace transforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源