论文标题

电化学阻抗光谱(EIS)反转算法的分析,设计和概括

Analysis, Design, and Generalization of Electrochemical Impedance Spectroscopy (EIS) Inversion Algorithms

论文作者

Effendy, Surya, Song, Juhyun, Bazant, Martin Z.

论文摘要

我们介绍了一个用于分析和设计EIS反转算法的框架。我们的框架源于观察到四个特征到定义明确的EIS反转算法,即(1)未知分布的表示,(2)最小化错误指标以估算由所选代表引起的估计参数,该参数是由所选代表产生的,受(3)对复杂性控制参数的约束,以及(4)对最佳参数的影响。必须存在这些特征,以克服EIS反转问题的不良本质。我们回顾了三种已建立的EIS反转算法,以说明这些特征的普遍性,并通过解决有关另外三种算法的歧义来显示框架的实用性。然后,我们的框架用于设计通用的EIS反转(GEISI)算法,该算法使用高斯基函数表示,模态控制参数和交叉验证来选择最佳控制参数值。 GEISI算法适用于广义的EIS反转问题,该问题允许更广泛的基础模型。我们还考虑了由算法引起的可靠间隔的构建。该算法能够准确地复制使用现有算法很难获得的分布。它可以在存储库https://github.com/suryaeff/geisi.git上免费提供。

We introduce a framework for analyzing and designing EIS inversion algorithms. Our framework stems from the observation of four features common to well-defined EIS inversion algorithms, namely (1) the representation of unknown distributions, (2) the minimization of a metric of error to estimate parameters arising from the chosen representation, subject to constraints on (3) the complexity control parameters, and (4) a means for choosing optimal control parameter values. These features must be present to overcome the ill-posed nature of EIS inversion problems. We review three established EIS inversion algorithms to illustrate the pervasiveness of these features, and show the utility of the framework by resolving ambiguities concerning three more algorithms. Our framework is then used to design the generalized EIS inversion (gEISi) algorithm, which uses Gaussian basis function representation, modality control parameter, and cross-validation for choosing the optimal control parameter value. The gEISi algorithm is applicable to the generalized EIS inversion problem, which allows for a wider range of underlying models. We also considered the construction of credible intervals for distributions arising from the algorithm. The algorithm is able to accurately reproduce distributions which have been difficult to obtain using existing algorithms. It is provided gratis on the repository https://github.com/suryaeff/gEISi.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源