论文标题

Athermal正规化晶格Boltzmann方法的线性稳定性

Linear stability of athermal regularized lattice Boltzmann methods

论文作者

Wissocq, Gauthier, Coreixas, Christophe, Boussuge, Jean-François

论文摘要

目前的工作致力于更好地理解正则晶格Boltzmann(LB)方案的稳定性。在此范围内,提出了二维模型的线性稳定性分析:标准的Bhatnagar-gross-Krook(BGK)碰撞模型,原始的预碰撞正则化和递归正则化模型,在其中,偏离平衡分布对递归配方进行了部分计算。通过分析线性系统的特征向量来完成对每个LB模式携带的物理内容的系统识别。然后,通过进行剪切和声波的模拟来确认稳定性结果。这项工作允许对每个模型的稳定性属性得出公平的结论。特别是,递归正则化是D2Q9晶格的最稳定模型,尤其是在零粘度限制中。强调了每个正规模型共享的两个主要属性:(1)模式过滤属性,(2)在不完整的条件下携带物理波的模式的不正确且广泛的各向异性,耗散率。第一个特性是提高稳定性的主要来源,尤其是对于递归正则化。这是在每个碰撞过程之前重建外平衡种群的直接结果,从而降低了离散方程系统的等级。第二个属性似乎与高阶矩平衡直接引起的数值误差有关。在这种情况下,这种属性可能会发生在这种稳定方法遵循的任何碰撞模型中。

The present work is dedicated to a better understanding of the stability properties of regularized lattice Boltzmann (LB) schemes. To this extent, linear stability analyses of two-dimensional models are proposed: the standard Bhatnagar-Gross-Krook (BGK) collision model, the original pre-collision regularization and the recursive regularized model, where off-equilibrium distributions are partially computed thanks to a recursive formula. A systematic identification of the physical content carried by each LB mode is done by analyzing the eigenvectors of the linear systems. Stability results are then numerically confirmed by performing simulations of shear and acoustic waves. This work allows drawing fair conclusions on the stability properties of each model. In particular, recursive regularization turns out to be the most stable model for the D2Q9 lattice, especially in the zero-viscosity limit. Two major properties shared by every regularized model are highlighted: (1) a mode filtering property, and (2) an incorrect, and broadly anisotropic, dissipation rate of the modes carrying physical waves in under-resolved conditions. The first property is the main source of increased stability, especially for the recursive regularization. It is a direct consequence of the reconstruction of off-equilibrium populations before each collision process, decreasing the rank of the system of discrete equations. The second property seems to be related to numerical errors directly induced by the equilibration of high-order moments. In such a case, this property is likely to occur with any collision model that follows such a stabilization methodology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源