论文标题
预测和学习线性动力学系统中的公平性
Fairness in Forecasting and Learning Linear Dynamical Systems
论文作者
论文摘要
在机器学习中,培训数据通常捕获一些基本人口的多个亚组的行为。当未仔细控制子组的培训数据量时,会产生代表性不足的偏差。我们介绍了两个自然的亚组公平和瞬时公平概念,以解决时间表预测问题的这种不足的偏见。特别是,我们考虑了从多个长度的多个轨迹以及相关的预测问题的线性动力学系统(LDS)的亚组和即时学习。我们使用非交易性多项式优化问题的凸面的层次结构为学习问题提供全球收敛方法。我们对由保险申请和众所周知的Compas数据集的有偏见数据集的经验结果既证明了公平考虑对统计绩效的有益影响,又表明了利用稀疏性对运行时间的效果。
In machine learning, training data often capture the behaviour of multiple subgroups of some underlying human population. When the amounts of training data for the subgroups are not controlled carefully, under-representation bias arises. We introduce two natural notions of subgroup fairness and instantaneous fairness to address such under-representation bias in time-series forecasting problems. In particular, we consider the subgroup-fair and instant-fair learning of a linear dynamical system (LDS) from multiple trajectories of varying lengths, and the associated forecasting problems. We provide globally convergent methods for the learning problems using hierarchies of convexifications of non-commutative polynomial optimisation problems. Our empirical results on a biased data set motivated by insurance applications and the well-known COMPAS data set demonstrate both the beneficial impact of fairness considerations on statistical performance and encouraging effects of exploiting sparsity on run time.