论文标题

哈密​​顿公式中阳米尔斯领域的渐近对称性

Asymptotic symmetries of Yang-Mills fields in Hamiltonian formulation

论文作者

Tanzi, Roberto, Giulini, Domenico

论文摘要

我们使用汉密尔顿形式主义研究了自由su(n)-yang-mills理论的渐近对称群。我们仔细遵循了亨尼亚(Henneaux)和特洛萨特(Troessaert)的策略,他们成功地将哈密顿形式主义应用于引力和电动力学的情况,从而从清晰的第一原理中得出了这些理论的各个渐近对称性群体。这些原则包括确保哈密顿结构(相空间,符号形式,可区分的哈密顿式)的最小假设,以及在庞加莱不变理论的情况下,是庞加莱集团的规范作用。在本文的第一部分中,我们展示了如何通过在田野上施加合适的损坏和奇偶校验条件,如何在非亚洲SU(n)-Yang-Mills案中满足这些要求。我们观察到,这些条件既不接受非平凡的渐近对称性,也不承认全球无数电荷。在本文的第二部分中,我们通过遵循与亨尼亚(Henneaux)和特洛萨特(Troessaert)在电磁案例中采用类似情况相同的策略来讨论这些条件的逐渐放松。与我们的期望以及Henneaux和Troessaert对Abelian案的发现相反,似乎没有放松符合哈密顿形式主义的要求,并允许非平凡的渐近对称性和指控。仅当庞加莱群体无法按规范行动或同骨形式的形式表达分歧时,即形式不存在时,非平凡的渐近对称性和电荷才有可能。这似乎暗示着一种在非亚伯仪理论的古典哈密顿式制定中内置的一种颜色。

We investigate the asymptotic symmetry group of the free SU(N)-Yang-Mills theory using the Hamiltonian formalism. We closely follow the strategy of Henneaux and Troessaert who successfully applied the Hamiltonian formalism to the case of gravity and electrodynamics, thereby deriving the respective asymptotic symmetry groups of these theories from clear-cut first principles. These principles include the minimal assumptions that are necessary to ensure the existence of Hamiltonian structures (phase space, symplectic form, differentiable Hamiltonian) and, in case of Poincaré invariant theories, a canonical action of the Poincaré group. In the first part of the paper we show how these requirements can be met in the non-abelian SU(N)-Yang-Mills case by imposing suitable fall-off and parity conditions on the fields. We observe that these conditions admit neither non-trivial asymptotic symmetries nor non-zero global charges. In the second part of the paper we discuss possible gradual relaxations of these conditions by following the same strategy that Henneaux and Troessaert had employed to remedy a similar situation in the electromagnetic case. Contrary to our expectation and the findings of Henneaux and Troessaert for the abelian case, there seems to be no relaxation that meets the requirements of a Hamiltonian formalism and allows for non-trivial asymptotic symmetries and charges. Non-trivial asymptotic symmetries and charges are only possible if either the Poincaré group fails to act canonically or if the formal expression for the symplectic form diverges, i.e. the form does not exist. This seems to hint at a kind of colour-confinement built into the classical Hamiltonian formulation of non-abelian gauge theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源