论文标题

黑森州地图

The Hessian map

论文作者

Ciliberto, Ciro, Ottaviani, Giorgio

论文摘要

在本文中,我们研究了Hessian Map $ h_ {d,r} $,该$将其与$ {\ Mathbb p}^r $ in n ymerface相关联,其Hessian HyseRurface。我们研究了这张地图的一般属性,并证明:$ h_ {d,1} $如果$ d \ geq 5 $;我们详细研究地图$ h_ {3,1} $,$ h_ {4,1} $和$ h_ {3,2} $;我们研究了Hessian Map限制$ d $的高度弯曲面源,而Waring等级$ r+2 $ in $ {\ Mathbb p}^r $,证明该限制是在$ r \ geq 2 $和$ d \ d \ egeq 3 $中的$ r \ geq 2 $ \ geq 2 $和$ d \ geq 3 $的注入,这意味着$ h_^3,3,3,3,3,3,3 ,,我们证明,Hessian地图的差异在$ d $的通用高度上是最大排名,而Waring等级$ r+2 $ in $ {\ MATHBB P}^r $,只要$ r \ r \ geq 2 $ 2 $和$ d \ d \ geq 3 $。

In this paper we study the Hessian map $h_{d,r}$ which associates to any hypersurface of degree $d$ in ${\mathbb P}^r$ its Hessian hypersurface. We study general properties of this map and we prove that: $h_{d,1}$ is birational onto its image if $d\geq 5$; we study in detail the maps $h_{3,1}$, $h_{4,1}$ and $h_{3,2}$; we study the restriction of the Hessian map to the locus of hypersurfaces of degree $d$ with Waring rank $r+2$ in ${\mathbb P}^r$, proving that this restriction is injective as soon as $r\geq 2$ and $d\geq 3$, which implies that $h_{3,3}$ is birational onto its image; we prove that the differential of the Hessian map is of maximal rank on the generic hypersurfaces of degree $d$ with Waring rank $r+2$ in ${\mathbb P}^r$, as soon as $r\geq 2$ and $d\geq 3$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源