论文标题

数据驱动的库普曼操作员用于基于模型的人机系统共享控制

Data-driven Koopman Operators for Model-based Shared Control of Human-Machine Systems

论文作者

Broad, Alexander, Abraham, Ian, Murphey, Todd, Argall, Brenna

论文摘要

我们提出了一种数据驱动的共享控制算法,该算法可用于改善人类操作员对复杂动态机器的控制,并实现对用户本身而言将具有挑战性或不可能的任务。我们的方法没有对系统动态的先验知识。取而代之的是,通过使用Koopman操作员从观察中学习了有关用户交互的动态和信息。使用学识渊博的模型,我们定义了一个优化问题来计算自主合作伙伴的控制策略。最后,我们根据用户输入和自主生成的控件的比较将控制权力分配给每个合作伙伴。我们将此想法称为基于模型的共享控制(MBSC)。我们通过两项由32位参与者组成的人类学科研究评估方法的功效(每项研究中有16名受试者)。第一项研究对建模和自主策略生成算法施加了线性约束。第二项研究探讨了更通用的非线性变体。总体而言,我们发现基于模型的共享控制可显着改善与自然学习或仅用户控制范式相比的任务和控制指标。我们的实验表明,通过Koopman运营商跨用户概括的模型,表明在为MBSC提供帮助之前,不必从每个用户收集数据。我们还证明了MBSC的数据效率,因此,这对于在线学习范式有用。最后,我们发现非线性变体对用户成功实现定义任务的能力比线性变体具有更大的影响。

We present a data-driven shared control algorithm that can be used to improve a human operator's control of complex dynamic machines and achieve tasks that would otherwise be challenging, or impossible, for the user on their own. Our method assumes no a priori knowledge of the system dynamics. Instead, both the dynamics and information about the user's interaction are learned from observation through the use of a Koopman operator. Using the learned model, we define an optimization problem to compute the autonomous partner's control policy. Finally, we dynamically allocate control authority to each partner based on a comparison of the user input and the autonomously generated control. We refer to this idea as model-based shared control (MbSC). We evaluate the efficacy of our approach with two human subjects studies consisting of 32 total participants (16 subjects in each study). The first study imposes a linear constraint on the modeling and autonomous policy generation algorithms. The second study explores the more general, nonlinear variant. Overall, we find that model-based shared control significantly improves task and control metrics when compared to a natural learning, or user only, control paradigm. Our experiments suggest that models learned via the Koopman operator generalize across users, indicating that it is not necessary to collect data from each individual user before providing assistance with MbSC. We also demonstrate the data-efficiency of MbSC and consequently, it's usefulness in online learning paradigms. Finally, we find that the nonlinear variant has a greater impact on a user's ability to successfully achieve a defined task than the linear variant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源