论文标题

最小值的条件力矩模型

Minimax Estimation of Conditional Moment Models

论文作者

Dikkala, Nishanth, Lewis, Greg, Mackey, Lester, Syrgkanis, Vasilis

论文摘要

我们开发了一种通过条件力矩限制描述的估算模型的方法,其原型应用是非参数仪器变量回归。我们介绍了最小值标准函数,根据该功能,可以将估计问题视为在建模者之间解决了零和游戏,该模型者正在对目标模型的假设空间进行优化,而对对手则在测试功能空间上确定了违反瞬间的对手。我们分析了针对均方根误差指标的适当类似物,分析了对任意假设空间的统计估计率,用于逆问题。我们表明,当对测试函数的第二次惩罚和测试功能空间的第二次惩罚将最小值标准正规化时,估计速率尺度则具有假设和测试功能空间的临界半径,通常会产生紧密的快速速率。我们的主要结果是根据通过Minimax目标定义的统计学习问题的新型局部Rademacher分析。我们为实践中使用的几个假设空间提供了主要结果的应用,例如:再现核希尔伯特空间,高维稀疏线性函数,通过形状约束定义的空间,整体估计量,例如随机森林和神经网络。对于每个应用程序,我们提供了解决相应的最小值问题的计算有效优化方法(例如,神经网络的随机一阶启发式方法)。在几种应用中,我们展示了我们修改的平方平方错误率如何结合构成逆问题的不良性的条件,从而导致平方错误率。我们以对所提出的方法进行了广泛的实验分析。

We develop an approach for estimating models described via conditional moment restrictions, with a prototypical application being non-parametric instrumental variable regression. We introduce a min-max criterion function, under which the estimation problem can be thought of as solving a zero-sum game between a modeler who is optimizing over the hypothesis space of the target model and an adversary who identifies violating moments over a test function space. We analyze the statistical estimation rate of the resulting estimator for arbitrary hypothesis spaces, with respect to an appropriate analogue of the mean squared error metric, for ill-posed inverse problems. We show that when the minimax criterion is regularized with a second moment penalty on the test function and the test function space is sufficiently rich, then the estimation rate scales with the critical radius of the hypothesis and test function spaces, a quantity which typically gives tight fast rates. Our main result follows from a novel localized Rademacher analysis of statistical learning problems defined via minimax objectives. We provide applications of our main results for several hypothesis spaces used in practice such as: reproducing kernel Hilbert spaces, high dimensional sparse linear functions, spaces defined via shape constraints, ensemble estimators such as random forests, and neural networks. For each of these applications we provide computationally efficient optimization methods for solving the corresponding minimax problem (e.g. stochastic first-order heuristics for neural networks). In several applications, we show how our modified mean squared error rate, combined with conditions that bound the ill-posedness of the inverse problem, lead to mean squared error rates. We conclude with an extensive experimental analysis of the proposed methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源