论文标题

结构相变和带隙控制通过分层半导体1T-ZRX2中的机械变形(X = S,SE)

Structural phase transition and bandgap control through mechanical deformation in layered semiconductors 1T-ZrX2 (X = S, Se)

论文作者

Martino, Edoardo, Santos-Cottin, David, Mardele, Florian Le, Semeniuk, Konstantin, Pizzochero, Michele, Cernevics, Kristians, Baptiste, Benoit, Delbes, Ludovic, Klotz, Stefan, Capitani, Francesco, Berger, Helmuth, Yazyev, Oleg V., Akrap, Ana

论文摘要

施加弹性变形可以在本地和可逆地调整物质物理特性。空间调制的晶格变形可以创建带隙梯度,从而有利于光电设备中的照片生成的电荷分离和收集。这些优点受到材料破裂前可以承受的最大弹性应变的阻碍。通过去角质过渡金属二进制基因源TMDS得出的纳米材料是弹性变形的理想游乐场,因为它们可以维持大量的弹性菌株,最高百分之几。但是,具有高度应变性能的可去角色TMD已被证明对研究人员识别而具有挑战性。我们研究了1T-ZRS2和1T-ZRSE2,具有较大带盖的可去角色半导体。在压缩变形下,两个TMD都会显着改变其物理特性。 1T-ZRSE2经历了具有半导体到金属转变的外来三维晶格的可逆转换。在ZRS2中,两个不同的分层结构之间的不可逆转化伴随着突然的14%带隙减少。这些结果表明,基于ZR的TMD是用于空间纹理带盖的最佳应变可分离平台,具有强大的新型光电设备和光收集的潜力。

Applying elastic deformation can tune a material physical properties locally and reversibly. Spatially modulated lattice deformation can create a bandgap gradient, favouring photo-generated charge separation and collection in optoelectronic devices. These advantages are hindered by the maximum elastic strain that a material can withstand before breaking. Nanomaterials derived by exfoliating transition metal dichalcogenides TMDs are an ideal playground for elastic deformation, as they can sustain large elastic strains, up to a few percent. However, exfoliable TMDs with highly strain-tunable properties have proven challenging for researchers to identify. We investigated 1T-ZrS2 and 1T-ZrSe2, exfoliable semiconductors with large bandgaps. Under compressive deformation, both TMDs dramatically change their physical properties. 1T-ZrSe2 undergoes a reversible transformation into an exotic three-dimensional lattice, with a semiconductor-to-metal transition. In ZrS2, the irreversible transformation between two different layered structures is accompanied by a sudden 14 % bandgap reduction. These results establish that Zr-based TMDs are an optimal strain-tunable platform for spatially textured bandgaps, with a strong potential for novel optoelectronic devices and light harvesting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源