论文标题
算术进展的素数:大型模量II:良好的估计值
Primes in arithmetic progressions to large moduli II: Well-factorable estimates
论文作者
论文摘要
当用合适的算重的总和总结时,我们为Moduli的大小$ x $进程的量$ x $进行算术的量级定理建立了新的平均值定理。这扩展了Bombieri,Friedlander和Iwaniec的著名作品,他们最多处理$ X^{4/7-ε} $的Moduli。这对来自线性筛的筛子权重的分布水平产生了后果。
We establish new mean value theorems for primes of size $x$ in arithmetic progressions to moduli as large as $x^{3/5-ε}$ when summed with suitably well-factorable weights. This extends well-known work of Bombieri, Friedlander and Iwaniec, who handled moduli of size at most $x^{4/7-ε}$. This has consequences for the level of distribution for sieve weights coming from the linear sieve.