论文标题

通过特征融合拟合人士的学习有效表示

Learning Effective Representations for Person-Job Fit by Feature Fusion

论文作者

Jiang, Junshu, Ye, Songyun, Wang, Wei, Xu, Jingran, Luo, Xiaosheng

论文摘要

个人工作的合适是使用机器学习算法在在线招聘平台上匹配候选人和职位。匹配算法的有效性在很大程度上取决于候选人和工作职位的学习表现。在本文中,我们建议通过功能融合来学习候选人和工作职位的全面有效代表。首先,除了应用深度学习模型来处理简历和工作职位中的自由文本(现有方法采用)之外,我们还从整个简历(和工作职位)中提取语义实体,然后为其学习功能。通过融合自由文本和实体的功能,我们可以全面表示简历和职位职位中明确说明的信息。其次,但是,可能不会在简历或工作职位中明确捕获候选人或工作的一些信息。尽管如此,包括被接受和拒绝案件在内的历史应用程序可以揭示候选人或招聘人员的某些隐性意图。因此,我们建议通过使用LSTM处理历史应用来了解隐性意图的表示。最后,通过融合明确和隐性意图的表示形式,我们可以对人job的合身更全面,有效。实验超过10个月,实际数据表明,我们的解决方案的幅度优于现有方法。消融研究证实了融合表示的每个组成部分的贡献。提取的语义实体有助于解释案例研究期间的匹配结果。

Person-job fit is to match candidates and job posts on online recruitment platforms using machine learning algorithms. The effectiveness of matching algorithms heavily depends on the learned representations for the candidates and job posts. In this paper, we propose to learn comprehensive and effective representations of the candidates and job posts via feature fusion. First, in addition to applying deep learning models for processing the free text in resumes and job posts, which is adopted by existing methods, we extract semantic entities from the whole resume (and job post) and then learn features for them. By fusing the features from the free text and the entities, we get a comprehensive representation for the information explicitly stated in the resume and job post. Second, however, some information of a candidate or a job may not be explicitly captured in the resume or job post. Nonetheless, the historical applications including accepted and rejected cases can reveal some implicit intentions of the candidates or recruiters. Therefore, we propose to learn the representations of implicit intentions by processing the historical applications using LSTM. Last, by fusing the representations for the explicit and implicit intentions, we get a more comprehensive and effective representation for person-job fit. Experiments over 10 months real data show that our solution outperforms existing methods with a large margin. Ablation studies confirm the contribution of each component of the fused representation. The extracted semantic entities help interpret the matching results during the case study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源