论文标题
40,000英国生物银行参与者的颈部到膝盖的肾脏细分
Kidney segmentation in neck-to-knee body MRI of 40,000 UK Biobank participants
论文作者
论文摘要
英国生物银行正在收集有关健康相关特征超过50万志愿者的大量数据。血液和尿液的生物样品可以为肾功能提供有价值的见解,并具有与心血管和代谢健康的重要联系。可以通过医学成像获得有关肾脏解剖结构的更多信息。与大脑,心脏,肝脏和胰腺相反,没有计划用于肾脏的专用磁共振成像(MRI)。但是,基于图像的评估在颈部到膝盖的MRI中仍然是可行的,该MRI用于腹部组成分析,这也涵盖了肾脏。在这项工作中,提出了一条用于自动分割的管道,以自动分割英国生物银行颈部到膝盖的实质肾脏体积MRI。基础神经网络的相对误差为3.8%,对64名受试者的验证中的骰子得分为0.956,接近2.6%,骰子得分为0.962,一位人类操作员重复分割。可以在两天内处理约40,000名受试者的MRI,从而对左肾脏进行体积测量。算法质量评级可以排除异常值和潜在的故障案例。可以研究和共享所得的测量值,以大规模研究实施肾脏体积的关联和纵向变化。
The UK Biobank is collecting extensive data on health-related characteristics of over half a million volunteers. The biological samples of blood and urine can provide valuable insight on kidney function, with important links to cardiovascular and metabolic health. Further information on kidney anatomy could be obtained by medical imaging. In contrast to the brain, heart, liver, and pancreas, no dedicated Magnetic Resonance Imaging (MRI) is planned for the kidneys. An image-based assessment is nonetheless feasible in the neck-to-knee body MRI intended for abdominal body composition analysis, which also covers the kidneys. In this work, a pipeline for automated segmentation of parenchymal kidney volume in UK Biobank neck-to-knee body MRI is proposed. The underlying neural network reaches a relative error of 3.8%, with Dice score 0.956 in validation on 64 subjects, close to the 2.6% and Dice score 0.962 for repeated segmentation by one human operator. The released MRI of about 40,000 subjects can be processed within two days, yielding volume measurements of left and right kidney. Algorithmic quality ratings enabled the exclusion of outliers and potential failure cases. The resulting measurements can be studied and shared for large-scale investigation of associations and longitudinal changes in parenchymal kidney volume.