论文标题

在论文接受程度上表征作者:高能量物理学杂志的案例研究

Characterising authors on the extent of their paper acceptance: A case study of the Journal of High Energy Physics

论文作者

Hazra, Rima, Aryan, Aggarwal, Hardik, Marsili, Matteo, Mukherjee, Animesh

论文摘要

新的研究人员通常对可以加速其论文在著名论坛上接受论文的机会的食谱感到非常好奇(日记/会议)。为了寻找这种食谱,我们研究了作者的个人资料和同行评审文本,这些作者几乎总是在一个场地接受论文(我们当前工作中的高能量物理学杂志)。我们发现具有高接受率的作者可能会有大量的引用,高$ H $索引,更高的合作者等。我们注意到他们的论文获得了相对较长的积极评价。此外,我们还构建了三个网络 - 共同浏览器,共同引用和协作网络,并研究以网络为中心的特征以及类别内和类别间的相互作用。我们发现,在这些网络中,具有较高接受率的作者更为“中心”。与其他作者相比,具有较高接受率的作者的类别内和类别间相互作用的体积也大不相同。最后,使用上述功能,我们训练标准的机器学习模型(随机森林,XGBOOST),并获得很高的智慧精度和回忆。在后续讨论中,我们还叙述了除作者特征外,同行评审系统本身可能在推动不同类别之间的区别中发挥作用,这可能导致潜在的歧视和不公平,并要求系统管理员进行进一步调查。

New researchers are usually very curious about the recipe that could accelerate the chances of their paper getting accepted in a reputed forum (journal/conference). In search of such a recipe, we investigate the profile and peer review text of authors whose papers almost always get accepted at a venue (Journal of High Energy Physics in our current work). We find authors with high acceptance rate are likely to have a high number of citations, high $h$-index, higher number of collaborators etc. We notice that they receive relatively lengthy and positive reviews for their papers. In addition, we also construct three networks -- co-reviewer, co-citation and collaboration network and study the network-centric features and intra- and inter-category edge interactions. We find that the authors with high acceptance rate are more `central' in these networks; the volume of intra- and inter-category interactions are also drastically different for the authors with high acceptance rate compared to the other authors. Finally, using the above set of features, we train standard machine learning models (random forest, XGBoost) and obtain very high class wise precision and recall. In a followup discussion we also narrate how apart from the author characteristics, the peer-review system might itself have a role in propelling the distinction among the different categories which could lead to potential discrimination and unfairness and calls for further investigation by the system admins.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源