论文标题

SEGNBDT:分割的视觉决策规则

SegNBDT: Visual Decision Rules for Segmentation

论文作者

Wan, Alvin, Ho, Daniel, Song, Younjin, Tillman, Henk, Bargal, Sarah Adel, Gonzalez, Joseph E.

论文摘要

神经网络的黑盒性质限制了模型的决策解释性,尤其是计算机视觉中的高维输入和密集的像素预测任务(例如分段)。为了解决这个问题,先前的工作将神经网络与决策树结合在一起。但是,与最先进的分割模型相比,此类模型(1)的性能较差,或者(2)无法制定具有空间基础语义含义的决策规则。在这项工作中,我们构建了一个混合神经网络和决策树模型,以(1)达到神经网络细分精度,(2)提供了半自动构建的视觉决策规则,例如“有窗口吗?”。通过利用神经支持的决策树的见解,我们通过扩展显着性方法来分割和达到准确性,从而获得语义视觉含义,这是对决策树的深度学习类似物进行图像分类。我们的模型SEGNBDT在最先进的HRNETV2分割模型的2-4%之内达到了准确性,同时还保持了解释性。我们在三个基准数据集(Pascal-Contept(49.12%),CityScapes(79.01%)上,我们在三个基准数据集上实现了最先进的性能,并研究人员(51.64%)。此外,用户研究表明,视觉决策规则更容易解释,尤其是对于不正确的预测。可以在https://github.com/daniel-ho/segnbdt上找到代码和预算模型。

The black-box nature of neural networks limits model decision interpretability, in particular for high-dimensional inputs in computer vision and for dense pixel prediction tasks like segmentation. To address this, prior work combines neural networks with decision trees. However, such models (1) perform poorly when compared to state-of-the-art segmentation models or (2) fail to produce decision rules with spatially-grounded semantic meaning. In this work, we build a hybrid neural-network and decision-tree model for segmentation that (1) attains neural network segmentation accuracy and (2) provides semi-automatically constructed visual decision rules such as "Is there a window?". We obtain semantic visual meaning by extending saliency methods to segmentation and attain accuracy by leveraging insights from neural-backed decision trees, a deep learning analog of decision trees for image classification. Our model SegNBDT attains accuracy within ~2-4% of the state-of-the-art HRNetV2 segmentation model while also retaining explainability; we achieve state-of-the-art performance for explainable models on three benchmark datasets -- Pascal-Context (49.12%), Cityscapes (79.01%), and Look Into Person (51.64%). Furthermore, user studies suggest visual decision rules are more interpretable, particularly for incorrect predictions. Code and pretrained models can be found at https://github.com/daniel-ho/SegNBDT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源