论文标题

口吃的康威序列仍然是康威序列

Stuttering Conway Sequences Are Still Conway Sequences

论文作者

Brier, Éric, Géraud-Stewart, Rémi, Naccache, David, Pacco, Alessandro, Troiani, Emanuele

论文摘要

通过读取当前值的数字,将相同的数字分组在一起:从1开始,序列读取:1,11,11,21,121,121,111221,312211等来迭代获得外观序列(OEIS A005150)。从任何数字$ d \ neq 1 $开始,都提供了Conway的序列:$ D $,$ 1D $,$ 111D $,$ 311D $,$ 13211D $等(OEIS A006715)。康威(Conway)推广了这些序列,并研究了它们的一些属性。在本文中,我们考虑了一个变体的“再次出现”,其中重复数字两次。我们证明,再次显示序列仅包含数字$ 1、2、4、6,D $,其中$ d $代表起始数字。这样的序列分解和连续长度的比率会收敛到康威的常数。实际上,这些属性是由外观序列和“经典”外观序列之间的通勤图引起的。类似的结果适用于“外观三次”序列。

A look-and-say sequence is obtained iteratively by reading off the digits of the current value, grouping identical digits together: starting with 1, the sequence reads: 1, 11, 21, 1211, 111221, 312211, etc. (OEIS A005150). Starting with any digit $d \neq 1$ gives Conway's sequence: $d$, $1d$, $111d$, $311d$, $13211d$, etc. (OEIS A006715). Conway popularised these sequences and studied some of their properties. In this paper we consider a variant subbed "look-and-say again" where digits are repeated twice. We prove that the look-and-say again sequence contains only the digits $1, 2, 4, 6, d$, where $d$ represents the starting digit. Such sequences decompose and the ratio of successive lengths converges to Conway's constant. In fact, these properties result from a commuting diagram between look-and-say again sequences and "classical" look-and-say sequences. Similar results apply to the "look-and-say three times" sequence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源