论文标题

不完美的因果知识下的算法追索权:一种概率方法

Algorithmic recourse under imperfect causal knowledge: a probabilistic approach

论文作者

Karimi, Amir-Hossein, von Kügelgen, Julius, Schölkopf, Bernhard, Valera, Isabel

论文摘要

最近的工作讨论了反事实解释的局限性,以推荐算法追索行动,并主张需要考虑特征之间的因果关系。不幸的是,实际上,真正的潜在结构因果模型通常是未知的。在这项工作中,我们首先表明,如果不访问真实的结构方程,就无法保证追索权。为了解决这一限制,我们提出了两种概率方法,以选择有限的因果知识(例如,仅因果图),以高概率实现追索权的最佳作用。第一个捕获了加斯噪声下结构方程的不确定性,并使用平均贝叶斯模型来估计反事实分布。第二次通过计算追索权对寻求追索的人的平均效果来消除对结构方程的任何假设,从而导致基于基于亚群的新型介入的追索性概念。然后,我们得出了一个基于梯度的程序,用于选择最佳追索行动,并从经验上表明,所提出的方法在因果关系知识下与非稳定基准相比,在不完善的因果知识下提出了更可靠的建议。

Recent work has discussed the limitations of counterfactual explanations to recommend actions for algorithmic recourse, and argued for the need of taking causal relationships between features into consideration. Unfortunately, in practice, the true underlying structural causal model is generally unknown. In this work, we first show that it is impossible to guarantee recourse without access to the true structural equations. To address this limitation, we propose two probabilistic approaches to select optimal actions that achieve recourse with high probability given limited causal knowledge (e.g., only the causal graph). The first captures uncertainty over structural equations under additive Gaussian noise, and uses Bayesian model averaging to estimate the counterfactual distribution. The second removes any assumptions on the structural equations by instead computing the average effect of recourse actions on individuals similar to the person who seeks recourse, leading to a novel subpopulation-based interventional notion of recourse. We then derive a gradient-based procedure for selecting optimal recourse actions, and empirically show that the proposed approaches lead to more reliable recommendations under imperfect causal knowledge than non-probabilistic baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源