论文标题
司额电路和受约束的障碍性问题问题
Sublinear Circuits and the Constrained Signomial Nonnegativity Problem
论文作者
论文摘要
有条件的AM/GM-指数总和(条件鼠尾草)是一种分解方法,可以证明在真实空间的某些子集$ x $上证明障碍或多项式的非阴性。在本文中,我们对凸套装$ x $的有条件鼠尾草障碍进行了第一个结构性分析。我们介绍了有限子集$ \ Mathcal {a} \ subset \ Mathbb {r}^n $的$ x $ -Circuits,该\ subset \ Mathbb {r}^n $,它将其概括为由$ \ Mathcal {a} $诱导的offine-linear matroid的简单电路。 $ x $ circuits是我们分析的主要工具,并展示了多面体$ x $的特别丰富的组合特性,在这种情况下,$ x $ circuits组成的一组由合适的多面体风扇组成。 $ x $ circuits的框架透明地揭示了当$ x $ nonenegative有条件的AM/GM-指数实际上可以作为简单的$ x $ nonenegation mighnegative mistomials进一步分解。我们为$ x $ circuits开发了二元理论,并与基集的几何形状连接,这些布景是根据几何平均值的凸的。当$ x $是多面体时,该理论提供了有条件的鼠尾草障碍的最佳功率锥重建。结合减少$ x $ circuits的概念,双重性理论促进了条件鼠尾草锥极端射线的表征。 由于在对数变量取代下的障碍给出了多项式,因此我们的结果也对非负多项式和多项式优化有影响。
Conditional Sums-of-AM/GM-Exponentials (conditional SAGE) is a decomposition method to prove nonnegativity of a signomial or polynomial over some subset $X$ of real space. In this article, we undertake the first structural analysis of conditional SAGE signomials for convex sets $X$. We introduce the $X$-circuits of a finite subset $\mathcal{A} \subset \mathbb{R}^n$, which generalize the simplicial circuits of the affine-linear matroid induced by $\mathcal{A}$ to a constrained setting. The $X$-circuits serve as the main tool in our analysis and exhibit particularly rich combinatorial properties for polyhedral $X$, in which case the set of $X$-circuits is comprised of one-dimensional cones of suitable polyhedral fans. The framework of $X$-circuits transparently reveals when an $X$-nonnegative conditional AM/GM-exponential can in fact be further decomposed as a sum of simpler $X$-nonnegative signomials. We develop a duality theory for $X$-circuits with connections to geometry of sets that are convex according to the geometric mean. This theory provides an optimal power cone reconstruction of conditional SAGE signomials when $X$ is polyhedral. In conjunction with a notion of reduced $X$-circuits, the duality theory facilitates a characterization of the extreme rays of conditional SAGE cones. Since signomials under logarithmic variable substitutions give polynomials, our results also have implications for nonnegative polynomials and polynomial optimization.