论文标题

司额电路和受约束的障碍性问题问题

Sublinear Circuits and the Constrained Signomial Nonnegativity Problem

论文作者

Murray, Riley, Naumann, Helen, Theobald, Thorsten

论文摘要

有条件的AM/GM-指数总和(条件鼠尾草)是一种分解方法,可以证明在真实空间的某些子集$ x $上证明障碍或多项式的非阴性。在本文中,我们对凸套装$ x $的有条件鼠尾草障碍进行了第一个结构性分析。我们介绍了有限子集$ \ Mathcal {a} \ subset \ Mathbb {r}^n $的$ x $ -Circuits,该\ subset \ Mathbb {r}^n $,它将其概括为由$ \ Mathcal {a} $诱导的offine-linear matroid的简单电路。 $ x $ circuits是我们分析的主要工具,并展示了多面体$ x $的特别丰富的组合特性,在这种情况下,$ x $ circuits组成的一组由合适的多面体风扇组成。 $ x $ circuits的框架透明地揭示了当$ x $ nonenegative有条件的AM/GM-指数实际上可以作为简单的$ x $ nonenegation mighnegative mistomials进一步分解。我们为$ x $ circuits开发了二元理论,并与基集的几何形状连接,这些布景是根据几何平均值的凸的。当$ x $是多面体时,该理论提供了有条件的鼠尾草障碍的最佳功率锥重建。结合减少$ x $ circuits的概念,双重性理论促进了条件鼠尾草锥极端射线的表征。 由于在对数变量取代下的障碍给出了多项式,因此我们的结果也对非负多项式和多项式优化有影响。

Conditional Sums-of-AM/GM-Exponentials (conditional SAGE) is a decomposition method to prove nonnegativity of a signomial or polynomial over some subset $X$ of real space. In this article, we undertake the first structural analysis of conditional SAGE signomials for convex sets $X$. We introduce the $X$-circuits of a finite subset $\mathcal{A} \subset \mathbb{R}^n$, which generalize the simplicial circuits of the affine-linear matroid induced by $\mathcal{A}$ to a constrained setting. The $X$-circuits serve as the main tool in our analysis and exhibit particularly rich combinatorial properties for polyhedral $X$, in which case the set of $X$-circuits is comprised of one-dimensional cones of suitable polyhedral fans. The framework of $X$-circuits transparently reveals when an $X$-nonnegative conditional AM/GM-exponential can in fact be further decomposed as a sum of simpler $X$-nonnegative signomials. We develop a duality theory for $X$-circuits with connections to geometry of sets that are convex according to the geometric mean. This theory provides an optimal power cone reconstruction of conditional SAGE signomials when $X$ is polyhedral. In conjunction with a notion of reduced $X$-circuits, the duality theory facilitates a characterization of the extreme rays of conditional SAGE cones. Since signomials under logarithmic variable substitutions give polynomials, our results also have implications for nonnegative polynomials and polynomial optimization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源