论文标题

探测普朗克量表:由于时空的量子结构而导致的时间演化运算符的修改

Probing the Planck scale: The modification of the time evolution operator due to the quantum structure of spacetime

论文作者

Padmanabhan, T.

论文摘要

在NRQM中演变的传播器可以表示为时间演变操作员的矩阵元素:I.E $ g _ {\ rm nr}(x)= \ langle {\ langle {\ mathbf {x} _2} _2} _2} nr}(t)} | {\ MathBf {x} _1} \ rangle $在正常的eigenkets $ | {\ mathbf {x}} \ rangle $的位置操作员的$。在QFT中,不可能定义一个概念上有用的单粒子位置操作员或其eigenkets。也不可能将相对论(Feynman)繁殖者$ g_r(x)$解释为发展任何形式的单粒子波函数。尽管如此,但确实可以在qft中以矩阵元素$ \ langle {\ mathbf {x} _2} | {u _ {\ rm rm r}(t)(t)(t)} | {\ mathbf {x} _1} _1} _1} _1} _1} _1} _1} _1} _1} _1} _1} _1} _1} _1 _1} _1} _1} _1} _1} _1} _1 _1} _1 _1} _1} _1} _1} _1 _1} _1} _1} _1} _1} _1} _1 _1} _1} _1} _1 _1} _1 (非正常现象)kets $ | {\ mathbf {x}} \ rangle $由空间坐标标记。在接近但不太接近普朗克量表的介质尺度上,可以通过引入零点长度来将量子重力校正到传播器。事实证明,即使是该QG校正的传播器也可以表示为矩阵元素$ \ langle {\ MathBf {x} _2} | {u _ {\ rm qg}(\ rm qg}(t)} | {\ Mathbf {x Mathbf {x}} _1} _1} \ rangle $。我描述了这些结果并探讨了几个后果。事实证明,进化运算符$ u _ {\ rm qg}(t)$对于子planckian时间间隔而言是非自动的,而在时间间隔则保持统一的时间大于Planck时间。结果可以推广到任何超级弯曲的时空。

The propagator which evolves the wave-function in NRQM, can be expressed as a matrix element of a time evolution operator: i.e $ G_{\rm NR}(x)= \langle{\mathbf{x}_2}|{U_{\rm NR}(t)}|{\mathbf{x}_1}\rangle$ in terms of the orthonormal eigenkets $|{\mathbf{x}}\rangle$ of the position operator. In QFT, it is not possible to define a conceptually useful single-particle position operator or its eigenkets. It is also not possible to interpret the relativistic (Feynman) propagator $G_R(x)$ as evolving any kind of single-particle wave-functions. In spite of all these, it is indeed possible to express the propagator of a free spinless particle, in QFT, as a matrix element $\langle{\mathbf{x}_2}|{U_{\rm R}(t)}|{\mathbf{x}_1}\rangle$ for a suitably defined time evolution operator and (non-orthonormal) kets $|{\mathbf{x}}\rangle$ labeled by spatial coordinates. At mesoscopic scales, which are close but not too close to Planck scale, one can incorporate quantum gravitational corrections to the propagator by introducing a zero-point-length. It turns out that even this QG corrected propagator can be expressed as a matrix element $\langle{\mathbf{x}_2}|{U_{\rm QG}(t)}|{\mathbf{x}_1}\rangle$. I describe these results and explore several consequences. It turns out that the evolution operator $U_{\rm QG}(t)$ becomes non-unitary for sub-Planckian time intervals while remaining unitary for time interval is larger than Planck time. The results can be generalised to any ultrastatic curved spacetime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源