论文标题
用新的早期黑暗能源解决哈勃张力
Resolving the Hubble Tension with New Early Dark Energy
论文作者
论文摘要
新的早期暗能量(NEDE)是电子伏特尺度上真空能的组成部分,在重组前不久,它在一阶相变衰减[ARXIV:1910.10739]。 NEDE组件有可能使用Supernovae(SN)数据(SN)数据来解决宇宙膨胀率的最新局部测量,并通过假设$ CDM的宇宙微波背景(CMB)的测量来从早期宇宙中推断出的膨胀率。我们深入讨论NEDE相变的两尺度场模型,包括气泡渗透,碰撞和聚结的过程。我们还估计了在碰撞阶段产生的重力波信号,并认为可以使用脉冲星时阵列进行搜索。在第二步中,我们构建了一个有效的宇宙学模型,该模型将相变为瞬时过程,并得出与整个过渡表面扰动相匹配的协变量方程。将宇宙学模型拟合到CMB,Baryonic声学振荡和SN数据,我们报告$ H_0 = 69.6^{+1.0} _ { - 1.3} \,\ textrm {km} \,\,\ textrm C.L.)没有哈勃参数的本地测量,将张力降低到$ 2.5 \,σ$。包括本地输入,我们发现$ h_0 = 71.4 \ pm 1.0 \,\ textrm {km} \,\ textrm {s}^{ - 1} \,\,\ textrm {mpc}^{ - 1}^{ - 1} $(68 \%$ c.l. σ$意义。
New Early Dark Energy (NEDE) is a component of vacuum energy at the electron volt scale, which decays in a first-order phase transition shortly before recombination [arXiv:1910.10739]. The NEDE component has the potential to resolve the tension between recent local measurements of the expansion rate of the Universe using supernovae (SN) data and the expansion rate inferred from the early Universe through measurements of the cosmic microwave background (CMB) when assuming $Λ$CDM. We discuss in depth the two-scalar field model of the NEDE phase transition including the process of bubble percolation, collision, and coalescence. We also estimate the gravitational wave signal produced during the collision phase and argue that it can be searched for using pulsar timing arrays. In a second step, we construct an effective cosmological model, which describes the phase transition as an instantaneous process, and derive the covariant equations that match perturbations across the transition surface. Fitting the cosmological model to CMB, baryonic acoustic oscillations and SN data, we report $H_0 = 69.6^{+1.0}_{-1.3} \, \textrm{km}\, \textrm{s}^{-1}\, \textrm{Mpc}^{-1}$ $(68 \%$ C.L.) without the local measurement of the Hubble parameter, bringing the tension down to $2.5\, σ$. Including the local input, we find $H_0 = 71.4 \pm 1.0 \, \textrm{km}\, \textrm{s}^{-1}\, \textrm{Mpc}^{-1}$ $(68 \%$ C.L.) and strong evidence for a non-vanishing NEDE component with a $\simeq 4\, σ$ significance.