论文标题
GNNADVISOR:GPU上GNN加速的自适应运行时系统
GNNAdvisor: An Adaptive and Efficient Runtime System for GNN Acceleration on GPUs
论文作者
论文摘要
随着基于图的深度学习的新兴趋势,图形神经网络(GNN)出色地出现了它们产生高质量节点特征向量(嵌入)的能力。但是,现有的一定型GNN实现不足以赶上不断发展的GNN体系结构,越来越多的图形尺寸以及各种节点嵌入维度。为此,我们建议\ textbf {gnnadvisor},这是一种自适应和高效的运行时系统,可在GPU平台上加速各种GNN工作负载。首先,GNNADVISOR探索并确定了GNN模型和输入图的几个与性能相关的功能,并将它们用作GNN加速度的新驱动力。其次,GNNADVISOR实施了一种新颖且高效的2D工作负载管理,该管理专为GNN计算而定制,以改善不同应用程序设置下的GPU利用率和性能。第三,GNNADVISOR通过根据GPU内存结构和GNN工作负载的特征优雅地协调GNN的执行来利用GPU内存层次结构。此外,为了启用自动运行时优化,GNNADVISOR结合了一个轻巧的分析模型,用于有效的设计参数搜索。广泛的实验表明,Gnnadvisor的表现优于最先进的GNN计算框架,例如Deep Graph库(平均$ 3.02 \ times $的$ 3.02 \ times $)和Neugraph(在各个数据集中的主流GNN架构上,最高$ 4.10 \ tims $ livter $ light)。
As the emerging trend of graph-based deep learning, Graph Neural Networks (GNNs) excel for their capability to generate high-quality node feature vectors (embeddings). However, the existing one-size-fits-all GNN implementations are insufficient to catch up with the evolving GNN architectures, the ever-increasing graph sizes, and the diverse node embedding dimensionalities. To this end, we propose \textbf{GNNAdvisor}, an adaptive and efficient runtime system to accelerate various GNN workloads on GPU platforms. First, GNNAdvisor explores and identifies several performance-relevant features from both the GNN model and the input graph, and uses them as a new driving force for GNN acceleration. Second, GNNAdvisor implements a novel and highly-efficient 2D workload management, tailored for GNN computation to improve GPU utilization and performance under different application settings. Third, GNNAdvisor capitalizes on the GPU memory hierarchy for acceleration by gracefully coordinating the execution of GNNs according to the characteristics of the GPU memory structure and GNN workloads. Furthermore, to enable automatic runtime optimization, GNNAdvisor incorporates a lightweight analytical model for an effective design parameter search. Extensive experiments show that GNNAdvisor outperforms the state-of-the-art GNN computing frameworks, such as Deep Graph Library ($3.02\times$ faster on average) and NeuGraph (up to $4.10\times$ faster), on mainstream GNN architectures across various datasets.