论文标题
Finsler对称锥的Siegel域
Siegel domains over Finsler symmetric cones
论文作者
论文摘要
让$ω$成为真正的Banach Space $ V $中的适当开放式锥体。我们表明,当且仅当$ω$是正常的线性线性线性的对称锥体时,$ω$上的管域$ v \ oplusiΩ$与有限的对称域是偶然的对称域,这等于$ v $是$ v $是unitital jb-algebra的条件,$是$ $ $ $ $ y是$ y Intideior n Intideior v^ v \ in V \} $。
Let $Ω$ be a proper open cone in a real Banach space $V$. We show that the tube domain $V \oplus iΩ$ over $Ω$ is biholomorphic to a bounded symmetric domain if and only if $Ω$ is a normal linearly homogeneous Finsler symmetric cone, which is equivalent to the condition that $V$ is a unital JB-algebra in an equivalent norm and $Ω$ is the interior of $\{v^2: v\in V\}$.