论文标题
计算患者患有糖尿病和共同患者
The Computational Patient has Diabetes and a COVID
论文作者
论文摘要
医学正在从治疗学科转变为依靠个性化和精确治疗计划的预防学科。大多数疾病的复杂和多层的病理生理模式需要全身医学方法,并且在当前的医疗疗法中挑战。另一方面,计算医学是一个充满活力的跨学科领域,可以帮助从以器官为中心的方法转变为以过程为导向的方法。理想的计算患者将需要国际跨学科的努力,比人类基因组项目更大的科学和技术跨学科性。当部署时,这样的患者将对医疗保健的分娩方式产生深远的影响。在这里,我们提出了一个计算患者模型,该模型可以整合,完善和扩展心血管,RAS和糖尿病过程的最新机械或现象学模型。我们的目标是双重的:分析计算患者模型构建块的模块化和组合性,并在更广泛的功能背景下研究幸福感和疾病状态的动力学特性。我们提出了许多实验的结果,其中我们表征了Covid-19和2型糖尿病(T2D)对心血管和炎症条件的动态影响。我们在不同的运动,餐和药物方案下测试了这些实验。我们报告的结果表明,瞬态动态响应对急性状态条件的重要性非常重要,我们为系统医学中模块和组件之间的相互关系的系统设计原理提供了指南。最后,该初始计算患者可以用作进一步修改和扩展的工具箱。
Medicine is moving from a curative discipline to a preventative discipline relying on personalised and precise treatment plans. The complex and multi level pathophysiological patterns of most diseases require a systemic medicine approach and are challenging current medical therapies. On the other hand, computational medicine is a vibrant interdisciplinary field that could help move from an organ-centered approach to a process-oriented approach. The ideal computational patient would require an international interdisciplinary effort, of larger scientific and technological interdisciplinarity than the Human Genome Project. When deployed, such a patient would have a profound impact on how healthcare is delivered to patients. Here we present a computational patient model that integrates, refines and extends recent mechanistic or phenomenological models of cardiovascular, RAS and diabetic processes. Our aim is twofold: analyse the modularity and composability of the model-building blocks of the computational patient and to study the dynamical properties of well-being and disease states in a broader functional context. We present results from a number of experiments among which we characterise the dynamic impact of COVID-19 and type-2 diabetes (T2D) on cardiovascular and inflammation conditions. We tested these experiments under different exercise, meal and drug regimens. We report results showing the striking importance of transient dynamical responses to acute state conditions and we provide guidelines for system design principles for the inter-relationship between modules and components in systemic medicine. Finally this initial computational Patient can be used as a toolbox for further modifications and extensions.