论文标题

4D力学中的惯性

Inertia in 4D-mechanics

论文作者

Spirichev, Yurii A.

论文摘要

讨论了与惯性相关的理论力学的重要方法论问题。分析惯性是基于能量摩尔植物保护定律在四维Minkowski时空进行的。这种方法使我们能够将保护动量和角动量的保护定律结合到单一定律中,并将实际上自然界中实际存在的惯性力与引入的虚构力量分开,以简化计算或源自从一个参考框架向另一个参考的过渡而产生的惯性力。从非偏见的近似中,可以从自然界中现有的惯性力的平衡方程中,用于移动连续培养基和惯性参考框架中的材料点。从这个方程式来看,我们世界的伪欧国几何形状在惯性力的表现中起着重要作用。在连续培养基中,所有惯性力的张量和平衡方程获得了带有角加速度的运动。这允许在当前范式的框架内的教育和科学文献中的原始类别和概念的原始类别和概念统一。

An important methodological problem of theoretical mechanics related to inertia is discussed. Analysis Inertia is performed in four-dimensional Minkowski space-time based on the law of conservation of energy-momentum. This approach allows us to combine the laws of conservation of momentum and angular momentum into a single law and separate the forces of inertia that actually exist in nature from the imaginary forces introduced to simplify calculations or arising from the transition from one frame of reference to another. From the energy-momentum tensor, in a non-relativistic approximation, the equation of balance of inertia forces existing in nature for a moving continuous medium and a material point in an inertial frame of reference is obtained. It follows from this equation that the pseudo-Euclidean geometry of our world plays an important role in the manifestation of inertia forces. The tensor and the balance equations of all inertia forces in a continuous medium a moving with angular acceleration are obtained. This allows uniform formulation and presentation of the original categories and concepts of classical and relativistic mechanics in educational and scientific literature within the framework of the current paradigm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源