论文标题

改进的凸孔concave minimax优化的算法

Improved Algorithms for Convex-Concave Minimax Optimization

论文作者

Wang, Yuanhao, Li, Jian

论文摘要

本文研究minimax优化问题$ \ min_x \ max_y f(x,y)$,其中$ f(x,y)$是$ m_x $ -stronglonglongly convex相对于$ x $,$ x $,$ m_y $ -stronglongly-stronglongly cove of $ y $ $ y $和$ y $和$ y $和$ y $ and $ y $ y $ y $ y $ y $ y y _x,l_x,l_ {xy},l_ {xy},l_y)$ - 平滑。张等。提供了任何一阶方法的梯度复杂度的以下下限:$ω\ bigl(\ sqrt {\ frac {\ frac {l_x} {m_x}+\ frac {l_ {l_ {xy}^2} {m_x {m_x {m_x m_y}+\frac{L_y}{m_y}}\ln(1/ε)\Bigr).$ This paper proposes a new algorithm with gradient complexity upper bound $\tilde{O}\Bigl(\sqrt{\frac{L_x}{m_x}+\frac{L\cdot l_ {xy}} {m_x m_y}+\ frac {l_y} {m_y}}} \ ln \ left(1/ε\ right)\ bigr),$ l = \ axax \ axmax \ = \ max \ {l_x,l_x,l_ {xy},l_ {xy},l_y \ y \} $。这可以改善最著名的上限$ \ tilde {o} \ left(\ sqrt {\ frac {\ frac {l^2} {m_x m_y}} \ ln^3 \ 3 \ left(1/ε\ right)\ right(1/ε\ right)\ right)。我们的界限实现了线性收敛速率和对条件号的依赖性,尤其是当$ l_ {xy} \ ll l $(即,当$ x $和$ y $之间的相互作用较弱时)。通过减少,我们的新结合还意味着改善了强烈凸出孔孔和凸孔concave minimax优化问题的界限。当$ f $是二次的时,我们可以进一步改善上限,该界限与下界匹配到一个小的亚物质因子。

This paper studies minimax optimization problems $\min_x \max_y f(x,y)$, where $f(x,y)$ is $m_x$-strongly convex with respect to $x$, $m_y$-strongly concave with respect to $y$ and $(L_x,L_{xy},L_y)$-smooth. Zhang et al. provided the following lower bound of the gradient complexity for any first-order method: $Ω\Bigl(\sqrt{\frac{L_x}{m_x}+\frac{L_{xy}^2}{m_x m_y}+\frac{L_y}{m_y}}\ln(1/ε)\Bigr).$ This paper proposes a new algorithm with gradient complexity upper bound $\tilde{O}\Bigl(\sqrt{\frac{L_x}{m_x}+\frac{L\cdot L_{xy}}{m_x m_y}+\frac{L_y}{m_y}}\ln\left(1/ε\right)\Bigr),$ where $L=\max\{L_x,L_{xy},L_y\}$. This improves over the best known upper bound $\tilde{O}\left(\sqrt{\frac{L^2}{m_x m_y}} \ln^3\left(1/ε\right)\right)$ by Lin et al. Our bound achieves linear convergence rate and tighter dependency on condition numbers, especially when $L_{xy}\ll L$ (i.e., when the interaction between $x$ and $y$ is weak). Via reduction, our new bound also implies improved bounds for strongly convex-concave and convex-concave minimax optimization problems. When $f$ is quadratic, we can further improve the upper bound, which matches the lower bound up to a small sub-polynomial factor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源