论文标题
深度时间延迟储层计算:动态和内存能力
Deep Time-Delay Reservoir Computing: Dynamics and Memory Capacity
论文作者
论文摘要
深度时间延迟的储层计算概念利用了单向连接的系统,并使用时间表进行监督学习。我们介绍了基于Ikeda的深层储层的动力学特性与其内存能力(MC)以及如何用于优化有关。特别是,我们分析了相应的自主系统的分叉,并计算有条件的Lyapunov指数,这些指数测量了输入和层动力学之间的广义同步。我们展示了MC与条件Lyapunov指数的分叉或大小的系统距离有关。不同动力学机制的相互作用导致线性和非线性MC之间的可调分布。此外,数值模拟在MC的所有程度上都显示了时钟周期和层延迟之间的共鸣。与单层储层中的MC损失相反,这些共振可以提高MC的单独程度,例如,例如设计具有最大线性MC的系统。因此,我们提出了两种配置,可以增强高非线性MC或长时间线性MC。
The Deep Time-Delay Reservoir Computing concept utilizes unidirectionally connected systems with time-delays for supervised learning. We present how the dynamical properties of a deep Ikeda-based reservoir are related to its memory capacity (MC) and how that can be used for optimization. In particular, we analyze bifurcations of the corresponding autonomous system and compute conditional Lyapunov exponents, which measure the generalized synchronization between the input and the layer dynamics. We show how the MC is related to the systems distance to bifurcations or magnitude of the conditional Lyapunov exponent. The interplay of different dynamical regimes leads to a adjustable distribution between linear and nonlinear MC. Furthermore, numerical simulations show resonances between clock cycle and delays of the layers in all degrees of the MC. Contrary to MC losses in a single-layer reservoirs, these resonances can boost separate degrees of the MC and can be used, e.g., to design a system with maximum linear MC. Accordingly, we present two configurations that empower either high nonlinear MC or long time linear MC.