论文标题

无秘密身份验证的指纹模拟IoT传感器

Fingerprinting Analog IoT Sensors for Secret-Free Authentication

论文作者

Lorenz, Felix, Thamsen, Lauritz, Wilke, Andreas, Behnke, Ilja, Waldmüller-Littke, Jens, Komarov, Ilya, Kao, Odej, Paeschke, Manfred

论文摘要

特别是在关键的城市基础设施的背景下,对物联网数据的信任至关重要。虽然大多数技术堆栈提供了用于对设备到云流量的身份验证和加密的手段,但目前尚无任何机制来排除使用物联网设备的传感器进行物理篡改的机制。在解决此差距时,我们引入了一种新方法,用于提取物联网传感器的硬件指纹,该指纹可用于无秘密的身份验证。通过将指纹与部署前记录的参考测量值进行比较,我们可以判断是否通过环境效应或恶意意图更改了连接到物联网设备的硬件。我们的方法利用了模拟电路的特征行为,通过将固定频率交替电流应用于传感器,同时记录其输出电压,从而揭示了这一行为。为了证明我们方法的一般可行性,我们使用实验室设备将其应用于四个市售温度传感器并评估准确性。结果表明,通过对两个超参数的明智配置,我们可以使用目标设备的几个记录来识别具有很高概率的单个传感器。

Especially in context of critical urban infrastructures, trust in IoT data is of utmost importance. While most technology stacks provide means for authentication and encryption of device-to-cloud traffic, there are currently no mechanisms to rule out physical tampering with an IoT device's sensors. Addressing this gap, we introduce a new method for extracting a hardware fingerprint of an IoT sensor which can be used for secret-free authentication. By comparing the fingerprint against reference measurements recorded prior to deployment, we can tell whether the sensing hardware connected to the IoT device has been changed by environmental effects or with malicious intent. Our approach exploits the characteristic behavior of analog circuits, which is revealed by applying a fixed-frequency alternating current to the sensor, while recording its output voltage. To demonstrate the general feasibility of our method, we apply it to four commercially available temperature sensors using laboratory equipment and evaluate the accuracy. The results indicate that with a sensible configuration of the two hyperparameters we can identify individual sensors with high probability, using only a few recordings from the target device.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源