论文标题

最佳关键指数$ l^{p} $通过Xiao的方法在球体上的Hardy类型不平等

Optimal critical exponent $L^{p}$ inequalities of Hardy type on the sphere via Xiao's method

论文作者

Abdelhakim, Ahmed A.

论文摘要

首先,我们纠正[Abimbola Abolarinwa,Kamilu Rauf,Songting Yin,Sharp $ L^{p} $ hardy类型和不确定性原理不等式,数学不等式杂志,13,4(2019),1011-1022],并获得$ L^$ l^p}的尖锐版本。 $ \ mathbb {s}^{n} $ for $ 2 \ leq p <n $。其次,我们证明了Sphere $ \ Mathbb {s}^{n} $ in $ \ MATHBB {r}^{r}^{n+1} $,$ n \ geq 2 $中的尖锐关键指数$ l^{n} $不等式。这个问题的奇异性是从球体上的任意点的大地距离距离。

First, we correct the proof presented in [Abimbola Abolarinwa, Kamilu Rauf, Songting Yin, Sharp $L^{p}$ Hardy type and uncertainty principle inequalities on the sphere, Journal of Mathematical Inequalities, 13, 4 (2019), 1011 - 1022] and obtain a correct sharp version of an $L^{p}$ Hardy inequality on the sphere $\mathbb{S}^{n}$ for all $2\leq p<n$. Secondly, we prove sharp critical exponent $L^{n}$ inequalities on the sphere $\mathbb{S}^{n}$ in $\mathbb{R}^{n+1}$, $n\geq 2$. The singularity in this problem is the geodesic distance from an arbitrary point on the sphere.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源