论文标题

比较分解和离散对数的难度:240位实验

Comparing the difficulty of factorization and discrete logarithm: a 240-digit experiment

论文作者

Boudot, Fabrice, Gaudry, Pierrick, Guillevic, Aurore, Heninger, Nadia, Thomé, Emmanuel, Zimmermann, Paul

论文摘要

我们报告了两个新记录:RSA-240的分解,一个795位的数字以及在795位素数领域上的离散对数计算。先前的记录是RSA-768在2009年的分解和2016年的768位离散对数计算。我们在795位级别的两个计算使用相同的硬件和软件进行了,并表明计算离散对数比相同大小的分解要难得多。此外,得益于算法变体和精心挑选的参数,我们的计算的价格明显比以前的记录所预期的要低得多。本文的最后一页还报告了RSA-250的分解。

We report on two new records: the factorization of RSA-240, a 795-bit number, and a discrete logarithm computation over a 795-bit prime field. Previous records were the factorization of RSA-768 in 2009 and a 768-bit discrete logarithm computation in 2016. Our two computations at the 795-bit level were done using the same hardware and software, and show that computing a discrete logarithm is not much harder than a factorization of the same size. Moreover, thanks to algorithmic variants and well-chosen parameters, our computations were significantly less expensive than anticipated based on previous records.The last page of this paper also reports on the factorization of RSA-250.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源