论文标题

Kalman过滤器基于多人头跟踪

Kalman Filter Based Multiple Person Head Tracking

论文作者

Ullah, Mohib, Mahmud, Maqsood, Ullah, Habib, Ahmad, Kashif, Imran, Ali Shariq, Cheikh, Faouzi Alaya

论文摘要

对于多目标跟踪,目标表示在性能中起关键的规则。最先进的方法依赖于基于深度学习的视觉表示,以高计算复杂性为代价提供了最佳性能。在本文中,我们提出了一个简单而有效的目标表示,用于人类跟踪。我们的灵感来自于人体在时间的流逝中经历严重的变形和闭塞间/内部闭塞的事实。因此,选择了相对刚性器官的跟踪,而不是跟踪整个身体部位,以在长时间内跟踪人类。因此,我们遵循按检测范式跟踪,并在每个帧中仅生成头部空间位置的目标假设。在头部位置定位之后,针对遵循场景中目标时间演变的每个目标实例化了具有恒定速度运动模型的Kalman滤波器。为了关联连续帧中的目标,使用组合优化,以贪婪的方式将相应的目标关联。在四个具有挑战性的视频监视数据集上评估了定性结果,并实现了有希望的结果。

For multi-target tracking, target representation plays a crucial rule in performance. State-of-the-art approaches rely on the deep learning-based visual representation that gives an optimal performance at the cost of high computational complexity. In this paper, we come up with a simple yet effective target representation for human tracking. Our inspiration comes from the fact that the human body goes through severe deformation and inter/intra occlusion over the passage of time. So, instead of tracking the whole body part, a relative rigid organ tracking is selected for tracking the human over an extended period of time. Hence, we followed the tracking-by-detection paradigm and generated the target hypothesis of only the spatial locations of heads in every frame. After the localization of head location, a Kalman filter with a constant velocity motion model is instantiated for each target that follows the temporal evolution of the targets in the scene. For associating the targets in the consecutive frames, combinatorial optimization is used that associates the corresponding targets in a greedy fashion. Qualitative results are evaluated on four challenging video surveillance dataset and promising results has been achieved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源